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The following guidelines may prove helpful during the reading of the manuscript.

☞ Except in the introductory Section 2.1, a basic acquaintance with su-
perstring theory in general, and CFT in particular has been assumed.
The short glossary in Appendix D provides supplementary material to
Section 2.1 and may be useful when you are browsing through the doc-
ument.

☞ Throughout, established theorems (conjectures) are output inside a
Theorem (Conjecture) environment. In contrast, a Fact environment
is reserved for results that are true to most string theorists, even though
a rigorous mathematical proof is still lacking.

☞ Items marked with ‘�’ are further explained in the Glossary.
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Planner

In recent times, string theory has opened new perspectives on geometry. Of
fundamental importance, is the understanding that space-time becomes a sec-
ondary concept, from the viewpoint of string theory, rather than a primary
given. Armed with this insight, it was hoped, first, that a deeper understand-
ing of the nature of space-time would be found within string theory. Unfor-
tunately, a complete understanding, if within reach at all, is still lacking, but
some progress has been made. Various parts in the present thesis must be
viewed in the light of this on-going search.

That string theory can generalise classical geometrical notions, finds its
origin in the way perturbative string theory is defined: it is studied as (a set
of) twodimensional field theories, that, moreover, must be conformal (CFT)
for consistency. One says that CFTs define string vacua. In this framework,
space-times that obey Einstein equations give rise to particular examples of
CFTs; on the other hand, there exists a huge collection of CFT beyond those.
Hence, the CFT string vacua enlarge the class of classical space-times. That
conformal field theory happens to be a well-studied subject in mathematical
physics, is a convenience that makes them attractive for applications in string
theory.

Open strings are associated to extended objects, different from strings,
which go under the name of ‘D-branes’. The latter will be the subject of Chap-
ter 2. Here, we motivate the use of the boundary state formalism to study
D-branes. This algebraic formalism enables one to extend the notion of D-
branes in classical geometries, to D-branes in arbitrary CFTs, where, a priori,
the meaning of D-branes need not be clear. That they are the appropriate
tools to define D-branes of the latter type nevertheless, is the main motiva-
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tion for the study of boundary states.

1.1 Motivation

1.1.1 Why string theory ?

Originally designed in an attempted description of the strong interaction,
string theory has gradually evolved into a research discipline strongly in-
teracting with various other branches of physics and mathematics. As of
today, it covers a vast area ranging from ‘quantum gravity’ to ‘quantum ge-
ometry’. Quotes used here must remind the reader that these notions are
still in a somewhat premature stage despite the huge efforts spent during the
past decades. Among various motivations for string theory, one is found ex-
tremely attractive: string theory may contain the ingredients to answer the
question

“What is the nature of space-time?”

In Einstein’s theory of general relativity, gravity is intimately tied to geom-
etry: general relativity, that is, classical gravity, is most concisely formulated
in differential geometric terms. In that framework, one is looking for man-
ifolds M with metrics g that solve Einsteins equations. It is precisely such
pairs (M, g) that legally acquire the epithet ‘space-time’. In comparison with
Newton’s formulation of gravity, of which general relativity is a refinement,
two features are new: firstly, space-time now becomes a dynamical entity, the
evolution of which is governed by the Einstein equations. For example, phys-
ical particles do not move in a fixed space-time background arena; rather,
they modify this background as dictated by the cited equations. Secondly,
general relativity reveals the strong entanglement between gravity and geom-
etry, thus connecting physical and mathematical data. One could say that in
Einstein gravity, Nature shows its geometrical face.

Since theoretical physicists appreciate a flavour of elegance in such physics-
geometry links, Einstein’s theory stimulated a geometrisation trend in (theo-
retical) physics: classical geometry was probed to ‘explain’ features of the-
oretical models. In more recent times, developments in superstring theory
have pushed this process to its limits. This has culminated in a number of
surprising results, often defying one’s intuition. Out of a plethora of such
stringy geometric phenomena, let us lift some remarkable examples:

(a) Space-time is a derived concept.
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The quantum theory of strings in its present formulation, is such that
space-time is rather secondary: measurable quantities are derived from
auxiliary two-dimensional quantum field theories of a peculiar type, the
so-called conformal field theories (CFTs). Let us elaborate these state-
ments some further.

In a given space-time (M, g), a string sweeps out a two-dimensional
surface W as it evolves in time; W describes the history of the string,
so to speak. To separate world-sheet and space-time has turned out
to be a powerful convenience: given a two-dimensional surface Σ, the
world-sheet as it is called, one studies how it is embedded in the space-
time manifold (M, g), the target space for short. Let us denote the
embedding map(s) Φ : Σ→M.

In the quantum theory, contributions of maps Φ with the appropriate
boundary conditions (initial and final string states) are weighted by the
exponentiated action S, where

S = 1
α′

∫
Σ
||∂φ||2 . (1.1.1)

The norm is taken w.r.t. the metric g on M, and ∂ symbolically denotes
derivatives w.r.t. world-sheet coordinates, obviously. In Polyakov’s for-
mulation, the string path integral schematically takes the form∫

Dh
∫
DΦ exp(iS[Φ, h]) . (1.1.2)

In words: the prescription is that one should sum over all possible met-
rics on Σ (the ‘h’ were left implicit in Eq. (1.1.1) for notational conve-
nience), and all embeddings Φ. Further, note that S is manifestly invari-
ant under reparametrisations and Weyl rescalings of Σ.

Potentially, there is a long story here, which can be summarised, fortu-
nately, as follows: after working one’s way through the gauge-fixing for
the path-integral to make sense, one would discover a residual confor-
mal symmetry. It is the latter that turns out to be the guiding principle
in string theory. An elaborate analysis further reveals that the initial,
classical conformal symmetry becomes anomalous in the quantum the-
ory, unless some conditions are obeyed. Among these, the ones that
are most relevant for our point are that g should obey the Einstein
equation, and further that the space-time dimension be 26 (10) in the
bosonic string (superstring) case. This means that string theory is only
well-defined quantum mechanically on physical space-times of the right
dimension.
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In conclusion, it is only through a backdoor that space-time effectively
pops up in the picture: the constraints on the target space are derived
entirely from consistency requirements on the two-dimensional, auxil-
iary world-sheet theory.

(b) String theory and non-geometric phases.

Intuition, both physical and geometrical, can easily be appealed to in the
non-linear sigma model�(NLSM) approach, that is, the picture of strings
drawn thus far. As said, strings can be understood there as pieces of
rope evolving in some background space-time. Recall that consistency
requirements singled out physical space-times, i.e., those obeying Ein-
stein equations, to be the ones of relevance. Crudely stated, the string
only cares about its associated two-dimensional field theory being a con-
formal field theory (CFT). This observation paves the way for abstrac-
tion: could one replace the non-linear sigma model by some abstract
CFT that need not have a geometrical meaning? The answer is in the
affirmative. Deprived of imagination, the strings are then said to prop-
agate in a CFT background, as opposed to the geometrical one of the
NLSM.

So-called minimal models are examples of CFTs where in many cases, a
lagrangian realisation is not known to exist. This state of affairs blurs
the immediate geometric significance of such models, since there is no
action, let alone embedding maps Φ. Rather, the CFTs are specified by
the energy-momentum tensor, T , the operator spectrum and the OPEs
that encode the short-distance behaviour of colliding operators. These
data suffice, in principle, to compute correlators and thus to solve the
theory.

Awkward as they appear, a large class of CFT backgrounds have been
argued to be continuously connected to non-linear sigma models (geo-
metric backgrounds), however, without the theory going awry. By this,
we mean to say that there exists a one-parameter family of CFTs, Ct , t ∈
[0,1] say, with respective energy-momentum tensors Tt , such that t = 0
corresponds to the abstract CFT, whereas t = 1 yields the geometric
NLSM. As such, this circumstance puts both types of backgrounds on an
equal footing. Put differently, CFTs enlarge the space of string vacua
formed by non-linear sigma-models. Moreover, the continuous con-
nection to the classical geometry of the NLSM phase allows us to give
‘stringy geometry’ a meaningful content in the abstract CFT phase.

What is the true nature of space-time, then? Probably the best option here,
is to give up insisting on a single well-defined notion. Rather, the way space-
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time reveals itself depends on the scale (energy) and object (point particle,
string, D-brane) it is being probed with. Compare the situation to a hydro-
gen nucleus being probed with electrons, say. At large distances, i.e.,using
low-energy probes, the nucleus is discovered as a localised positive charge,
whereas high-energy probes reveal a non-trivial internal structure.

1.1.2 Why CFT ?

Consistent geometric backgrounds are singled out by obeying Einstein’s equa-
tion, which may be derived from world-sheet (non-linear sigma model) pertur-
bation theory; from Eq. (1.1.1), this is a perturbation theory in α′/R2, where
R, a typical curvature radius of the target space, makes this parameter dimen-
sionless. If one looks more carefully, Einsteins’s equation acquires subleading
corrections in α′/R2, due to two-dimensional quantum effects. One says that
such α′-corrections are the string theory modification to general relativity:
sending α′/R2 to zero with fixed R corresponds to taking the point parti-
cle limit, indeed (see ‘worldsheet’ in the Glossary for more details). Anyhow,
the main point here, is that quantum conformal invariance of the non-linear
sigma model is only achieved order-by-order in α′/R2. That is, inherently to
the approach, the consistency equations, among which Einstein’s equation,
will receive corrections to all orders in α′, generically. This has the effect that
the classical string backgrounds, whence all quantities in the theory, have
to be adjusted order-by-order in α′ accordingly, for the string theory to be
well-defined.

This situation sharply contrasts with the case of genuine CFT backgrounds:
the latter being conformal to all orders of α′ from the start, there is no need
for/notion of (perturbative) corrections of the stated type. This feature lends
a certain degree of superiority to exactly conformal field theories over ap-
proximately conformal geometric backgrounds (NLSMs).

1.1.3 Why boundary states ?

Since boundary states�will constitute a whole chapter in this thesis, let us
motivate them. Roughly speaking, boundary states are an approach to D-
branes in a closed-string framework. As will be clarified in Chapter 2, the
geometric picture of D-branes is a locus in space-time where open strings can
end. Features of these open strings, namely, the spectrum of physical open-
string states, are precisely what boundary states encode, thereby keeping any
closed-string symmetry manifest. If the massless open superstrings in geo-
metric D-branes are all one is after, a systematic study of boundary states
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would seem like a waste of time and effort at first sight: given the massless
states in the flat space case, combined with supersymmetry, one simply ex-
trapolates to curved space. On second thoughts, however, this procedure is
not beyond question:

(a) Does it remain valid in regions where curvatures are large?

Orbifold spaces�, or slight perturbations thereof, are examples of spaces
where Riemann curvatures are sharply peaked. D-branes on such spaces
will be studied in Chapter 4.

(b) What about non-geometric CFT phases?

In such phases, space-time is (partially) replaced by some abstract CFT,
hence all geometric intuition disappears. Obviously, the space-time pic-
ture of D-branes as space-time submanifolds then breaks down, since
there is no such thing as space-time. However, as it turns out, boundary
states are still sensible constructs. Following general principles, Cardy
was able to write down a consistent class of such states, given a generic
closed-string CFT. Assembling this information, boundary states will be
the key objects in extending the notion of D-branes from the geometric
to the non-geometric CFT phase. Boundary states do well deserve to be
studied, since they contain information on non-geometric D-branes that
appears to be hard to get one’s hands on, with the presently available
techniques in string theory.

(c) What if no supersymmetry is present?

The subclass of non-BPS D-brane states constitutes yet another piece
of motivation for the study of boundary states, for presently, other
string theory techniques usually rely on BPS�(space-time supersymme-
try) properties explicitly, and hence fail to apply to non-BPS situations.
Boundary states can be constructed without appealing to any space-time
supersymmetry at all, which is why they persist in the absence of the lat-
ter.

Finally, let us stress that D-brane boundary states have the same flavour
of exactness w.r.t. D-brane SUGRA solutions as a closed-string CFT has w.r.t.
the effective supergravity description: for example, where the first capture
the complete string theory spectrum, the second only deal with the massless
states, effectively.

Also, boundary states enable us to understand features of orbifold string
theories, that otherwise follow from heuristic arguments only. In particular,
from the orbifold boundary states, it will become clear in Section 4.4 why
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string theory actually manages to remain well-behaved even though the target
space geometry may be singular.

1.2 A guided tour

Let us give an outline of the structure of this thesis, meanwhile pointing out
the results that were obtained.

In the introductory Section 2.1, D-branes are discussed from three com-
plementary perspectives. Additionally, some links between them are briefly
touched upon. Next, Section 2.2 sets the CFT framework that will be used
throughout this volume.

Chapter 3 collects various facts in the literature concerning geometry in
general, and orbifolds in particular. This chapter is conceived as if point par-
ticles, strings and D-branes were used as probes, which is reflected by its
structure. In the end, we hope to provide the reader with a sufficient back-
ground to tackle the remaining chapters. Section 3.1 deals with aspects of
classical geometry, thereby paying particular attention to reduced holonomy
issues and desingularisation of orbifolds. Since so-called ADE orbifolds pro-
vide the simplest examples, one such example is worked out in detail; this
should stimulate the digestion of the presented material. Next, Section 3.2
contains a review of orbifold CFTs, in the framework set in Section 2.2. Dur-
ing the preparation of this text, explicit formulas for traces were obtained
as a nice side-result. These do not seem to have appeared previously. Also
here, ADE cases are the main source of examples. However, Section 3.2.3
sheds a light on Calabi-Yau threefold singularities. Toric geometry is argued
to support an intermediate version of McKay correspondence, to be explored
in Chapter 5; this argument appears to be new. Finally, Section 3.3 recalls
basic facts concerning (fractional) D-branes on orbifolds, for convenience.

In Chapter 4, we develop the systematics of orbifold boundary states, ex-
tracting material from our paper [1] mostly. Through the example of the
N = 4 superconformal algebra (SCA), Section 4.1 demonstrates the relevance
of symmetry-preserving boundary conditions. In turn, this sets the stage for
Section 4.2 that reviews Cardy’s construction of consistent boundary states
in rational conformal field theory (RCFT). Preliminary to orbifold boundary
states, are the simpler flat space boundary states. Hence, these are treated
first, in Section 4.3. The fermion sectors and absolute normalisation of the
states, two features that appear not to have attracted special interest be-
fore, receive special attention. Finally, in Section 4.4 we construct consis-
tent states describing fractional orbifold D-branes. Cardy’s initial prescrip-
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tion only needs slightly modifying for the latter to fit within the framework.
In Chapter 5, McKay correspondence is explored. A short digression in

Section 5.1 on the mathematics involved, must in fact prepare for the subse-
quent Section 5.2. In the latter, the issue is tackled from the physics view-
point: D-branes and massless open strings are argued to realise McKay corre-
spondence, whereby some emphasis is put on the key rôle of the spin bundle.
It is hoped that the presentation adds to a clarification of various points in
the existing literature.

Chapter 6 deals with discrete torsion. After a review of the closed-string
side in Section 6.1, open-string issues are the subject of Section 6.2. The
Z6 × Z6 example which is worked out there, and which allows non-minimal
torsion, presents the possibility of multiple discrete charges. This conjectural
state of affairs would require further investigation. Finally, the geometry-CFT
correspondence is reviewed in Section 6.3, where toric geometry is also briefly
touched upon.

To tie up a few loose ends, two appendices are added. Appendix A con-
tains a primer on sheaves, whereas Appendix B gives an explicit account of
chiral traces that show up in orbifold partition functions.

Conclusions and outlook
Rounding up, let us recall the main result that was discussed in the thesis:

far and foremost, we have been able to generalize Cardy’s consistent bound-
ary state prescription to orbifold CFTs. Among other things, this means that
we have explicitly constructed closed-string descriptions of D-branes in orb-
ifold string theories, thereby not leaving the well-trodden path of CFT. The
power of the proper generalisation of Cardy’s prescription resides in the fact
that it allows us to treat all geometric orbifold boundary states in a unified
manner.

The following results were obtained as side-products of the manipulations
involved.

(a) Toric geometry has been demonstrated to support an intermediate ver-
sion of McKay correspondence, realised in closed-string CFT.

(b) As a by-product of the manipulations involved, the decomposition of
SO(2)1-modules into G-modules was explicitly found at the chiral-trace
level.

More interestingly, the reader must be aware that the subject is not com-
pletely closed. The most prominent open questions that remain, are listed
below:
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(a) discrete torsion D-branes require further investigation: a McKay like cor-
respondence and K-theoretic understanding of discrete charges would
seem desirable goals to endeavour;

(b) thus far, McKay correspondence has not been investigated in connec-
tion with orientifold backgrounds, or equivalently, unoriented type I
string theories, either. The observation that the latter can accommo-
date N = 1, d = 4 gauge theories, similarly to the oriented type II strings
in CY threefold backgrounds, seems to point towards a modified corre-
spondence, whereby a key question involves the orientifold projection.

It is hoped that the presented results contribute to a deeper insight in
the geometry–string theory correspondence. Beyond the CFT techniques in
the thesis, other approaches look equally attractive. Topological strings, in
particular, seem to be promising tools for major progress along these lines.

On the other hand, if one thing, recent years’ developments have taught
string theorists that immediate progress sometimes hides in unsuspected cor-
ners...
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2

Pointers

The present chapter serves two purposes. In Section 2.1, we provide the
reader with an elementary introduction to D-branes. Rather than to go techni-
cal, we have opted to sketch a global picture of present-day views on D-branes.
In the same run, the presentation enables us to comment on boundary states
and their range of applicability. Next, in Section 2.2 a number of conformal
field theory basics are reviewed, with the single goal to set the framework for
subsequent chapters. The topics covered include the Hilbert space structure
and fusion rules, CFT moduli spaces and supersymmetry, each of which will
be recurrent throughout this thesis.

2.1 Pictures of D-branes

In the first half of the last decade, string theory was observed to contain ex-
tended objects, other than perturbative strings. Since the memorable Strings
’95 Conference, it has become clear that the way towards progress in the
understanding of nonperturbative string theory may well be paved with so-
called D-branes. So far, the D-brane paradigm has essentially rested upon
three major cornerstones, to know: supergravity (SUGRA) solutions, gauge
theories and boundary conditions. Although different in character, the three
approaches are grossly complementary, and as such make D-branes a rich
set of tools to study a lot of string and field theory aspects previously be-
lieved beyond reach. We shall briefly review each of the approaches here, and
provide some obvious links.

Before a discussion of D-branes, it is instructive to look at an example in
SU(2) QCD with adjoint scalar fields. At large-distance scales, the quantum
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theory is effectively described by a classical gauge theory. It was realised
that there exist classical static solutions that, besides spontaneously breaking
SU(2) → U(1), also carry magnetic charge under the unbroken gauge group:
the ’t Hooft–Polyakov monopoles. We recall some basic features that will
become relevant below:

(a) This class of solutions has finite energy that is moreover localised; as
such, they can be thought of as particles, with a mass proportional to
1/e (e = the electric coupling) as it turns out1. Moreover, their charge is
quantised in units of 1/e for the quantum theory to make sense.

(b) The solutions come with integration ’constants’, collectively denoted by
{ci}. Sometimes, the latter are referred to as collective coordinates,
moduli or zero-modes. Typically, they are Goldstone modes of bro-
ken global symmetries: e.g., the center-of-mass reflects broken trans-
lation invariance. One proceeds by making the {ci} vary with time
t; the {ci(t)} are then interpreted as encoding the dynamics of the
monopole(s), where t is a coordinate along the monopole world-line.
In a semiclassical treatment, the {ci(t)} are canonically quantised.

(c) Inherently to the approach, the elementary excitations are treated differ-
ently from the monopole particles. Where QFT of the former continues
to apply in a classical monopole background, the latter can at best be
treated semiclassically as in (b).

2.1.1 D-branes as SUGRA solutions

At low energy scales, perturbative type II string�theories have effective su-
pergravity descriptions. They are the string theory analogues of the classical
gauge theory in the QCD example, with Ramond-Ramond�fields the higher-
p-form counterparts of the unbroken-U(1) gauge fields there. This obser-
vation ignited the search for static solutions that are charged wrt. those
gauge fields, D-brane solutions, say. The success of this program [2] sig-
nalled the existence of corresponding nonperturbative objects (D-branes) in
the full string theory in particular. In the simplest class of solutions, there
is only one nontrivial Ramond-Ramond charge and space-time is asymptot-
ically Minkowski. A common feature of those simple solutions is that they
partially break global translation invariance, and half of the global space-time
supersymmetry. Equivalently, the remaining half of the supersymmetries are

1In fact, for the notion of particle to make sense, one should verify that the solutions possess
a sufficient degree of coherence as well.
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Figure 2.1: Three possible approaches to D-branes.

preserved: they are BPS�states. The simplicity of such basic solutions makes
them useful building blocks to construct more complicated ones. Of the lat-
ter, solutions with multiple charges are particularly easily obtained by super-
position. Even though the gravity field equations are nonlinear, the BPS key
property2 ensures that (linear) superposition is a viable procedure to generate
new solutions from old ones. Typically, configurations with multiple charges
would further reduce the amount of preserved SUSY.

From the fact that the field equations encode the consistency requirements
on the closed string background, any solution to those equations defines a
consistent string vacuum. Particularly so, D-brane solutions may be viewed
as new nonperturbative arenas where the strings can live. Like in the SU(2) ex-
ample, the quantum theory of closed strings in such vacua is defined through
perturbation theory around such classical backgrounds.

2A more thorough analysis reveals that the range of parameters where the SUGRA solutions
can be trusted requires that gsN be large; at weak string coupling gs , this condition implies that
the number of branes, N , be large. As such, the no-force BPS condition is a crucial ingredient
for the SUGRA solutions to make sense.
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2.1.2 D-branes as boundary conditions

In an approach orthogonal to the above, D-branes made their appearance in
string theory via considerations of boundary conditions. Boundary condi-
tions come naturally with open strings, and vice versa. For one thing, the
latter sweep out surfaces with boundaries. In the simplest setup, the strings
are imagined to be moving in a Minkowski background. The requirement that
the endpoints of the string be confined to a given hypersurface D imposes
Dirichlet boundary conditions on the (bosonic) two-dimensional fields that
parametrise the space transverse toD, with a natural generalisation to world-
sheet fermionic fields, if any. Accordingly, D becomes a spacetime locus
’where open strings can end’. From the particular boundary condition type,
these hypersurfaces borrowed their name ’D(irichlet)-branes’. In a somewhat
loose language, D-branes get identified with (sets of) boundary conditions.
Among all possible boundary conditions, those preserving conformal invari-
ance at the worldsheet boundaries acquire a special status in string theory,
as will be seen in Chapter 4.

Actually, nothing prevents the logic from being turned around. Ultimately,
D-branes will be defined by a set of conformal symmetry preserving boundary
conditions, indeed (see Chapter 4). In contrast with nonlinear sigma models,
which are generically conformal order by order in α′ only, genuine CFTs are
exactly conformal by construction. If judiciously exploited, the latter symme-
try is in fact the key property that makes closed string correlation functions
accessible to computation after all. In a similar vein, the treatment of D-
branes as conformal symmetry preserving boundary conditions lends a power
to them that is superior to the supergravity solutions discussed in the previ-
ous section. In many respects, D-branes would be far less useful constructs in
string theory if the approximate (in α′) backgrounds above remained without
this ’microscopic’ supplement.

As an illustration, let us find out about immediate implications of allowing
strings to have their ends moving on the given hypersurface D. Quantisation
of such open strings produces an infinite tower of states that are confined
to D; that is, unlike the closed-string modes, which live in the bulk space-
time, open-string modes can only live where the D-branes are. In turn, the
effective dynamics of these states is governed by open string theory, and can
be encoded in a quantum field theory on D. As a result, open strings turn the
hypersurfaces they are ending on into a dynamical object: not only do they
endow it with degrees of freedom, they also supply the dynamics.
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2.1.3 D-branes and gauge theories

As to the massless degrees of freedom associated to D-branes, the massless
worldvolume fields for short, they interact according to a gauge theory. To
see this, note that the D-brane worldvolume bosonic fields involve massless
vectors among other fields. A consistent theory of such fields is believed to
be necessarily a gauge theory. Under favourable circumstances, namely, when
the branes are BPS�objects embedded in superstring theories, the fields fur-
nish multiplets�of a supersymmetric gauge theory. The fact that the leading
order effective theory is of super-Yang–Mills (SYM) type in effect, has been
confirmed in various ways (see Ref. [3] and references therein). As such, lo-
calised gauge theories are accomodated inside type II (and type I/I’) super-
string theories through D-branes.

Gradually, it has become clear that the SYM action is only the leading order
(in a derivative expansion) approximation to the so-called Born–Infeld (DBI)
action. Moreover, consistency considerations were used to argue that DBI had
to be supplemented further with a topological Wess-Zumino term. Presently,
it is beyond reasonable doubt that the D-brane long-wavelength dynamics is
indeed provided by appropriate versions of SYM (DBI) with a topological term.

D-branes and string theory have played a prominent rôle in major parts
of the progress in the area of ordinary quantum field theory. The following
examples were lifted out of an extensive list:

(a) Relations between seemingly unrelated field theories find a natural reali-
sation in terms of branes. A prominent example involves Hanany-Witten
[4] dualities. Without the notion of branes, it seems unlikely that those
would have been put forward.

(b) ’Old’ features of field theories allow for a modern brany reinterpreta-
tion. As an example, certain objects in gauge theories, such as magnetic
monopoles, vortices, and the like, can be understood as particular brane
set-ups.

Let us end with some comment here. In type II�theories two kinds of
nonabelian gauge symmetries 3 can be traced back to D-branes, even though

3Other known mechanisms to generate nonabelian gauge symmetries are:

(a) Torus compactifications lead to nonabelian enhanced symmetries whenever the radii
are tuned appropriately. Here, a subset of the winding and momentum states of closed
strings provide the nonabelian massless vectors. This is the old well-known route.

(b) More recently, multiple coincident NS-fivebranes in type IIA/B have been argued to dis-
play nonabelian gauge symmetries equally well [5, 6]. However, since NS-fivebranes are
not as well-understood in perturbative string worldsheet terms as D-branes, all argu-
ments that have appeared so far suffer from a degree of indirectness. This is to be
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their nature is very different.

(a) First, there are the aforementioned gauge theories localised on coin-
cident D-brane worldvolumes. As indicated, these result from open
strings that end there. In this scenario, the branes are rather passive:
they do nothing more than to provide an arena for the open string
modes to live.

(b) Next, D-branes figure in space-time gauge symmetry enhancement in
a completely disparate manner. In compactified type II theories the
Ramond-Ramond�closed string sector typically yields a set of abelian
U(1) vectors. The spacetime W-bosons charged under these R-R U(1)’s
are necessarily D-branes, since the latter are the only objects in the
theory that carry R-R charges. In appropriate circumstances these W-
bosons go massless, thus triggering the nonabelian gauge symmetry en-
hancement. In contrast with (a), the D-branes now play an active rôle in
the enhancement. Also, since the R-R fields involve closed, rather than
open strings, the gauge fields live in the bulk noncompact space-time.
In particular, it is not confined to any brane world-volume whatsoever.

2.1.4 Links

So far, the focus has been on the three corners in Fig. 2.1. we now move on to
discuss the arrows in the picture. To keep the digression within reasonable
bounds, we shall provide one nontrivial link between any pair of corners only.
It is hoped that this will get the reader convinced that the picture drawn so
far is an extremely rich source of new ideas.

SUGRA ↔ Gauge theories

One of the fruitful links between these two corners is the celebrated AdS-
CFT correspondence [7, 8, 9]. In this conjectured correspondence, gravitation
(closed string theory) in the near-horizon geometry of supergravity solutions
is believed to be dually described by a gauge theory (open strings, SYM) with
a large number of colors. This picture stirred quite some excitement, for if
true, strongly coupled (quantum) gravity might be a gauge theory, after all!
For a review, see Ref. [10].

contrasted with D-branes, where an exact CFT description is available, as discussed pre-
viously.
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SUGRA ↔ Open strings/Boundary conditions

Undoubtedly, the string theory microscopic derivation of the classical Beken-
stein–Hawking black hole entropy must be put on this link. This entropy,
identified with the area of the black hole horizon, has long remained a formal
quantity without a convincing underlying microscopic picture. However, the
identification of classes of D-brane solutions as particular (supersymmetric)
black holes on the one hand, and the picture of theories of open strings on
the other, led Strominger and Vafa [11] to the bold conjecture that the lat-
ter provide the microscopic states accounting for the entropy of the former.
This conjecture was subsequently generalised in various ways, but real-world
nonsupersymmetric black holes have stayed out of reach, so far.

Gauge theory ↔ Open strings

String theory and brane configurations provide a very effective setting for
space-time interpretations of classical solutions to the Yang–Mills equations.
Quite surprisingly, a class of magnetic monopoles in 4d YM theory allows for
an interpretation as D1-branes ending on a D3-brane. This may be seen as to
add to the high degree of consistency of the picture.

Also, besides ordinary gauge theories, the noncommutative ones also find
a natural home in open string theories. The noncommutativity parameter in
the gauge theory is in fact argued to be related to the closed string Kalb-
Ramond field. This remarkable observation has revived the interest of string
theorists in noncommutative gauge theories [12].

2.1.5 Boundary states

Now how do boundary states fit in? Shortly stated, boundary states have
two faces: they are sources for closed strings that simultaneously encode
information about open string spectra. If the open string dynamics is the
issue, one has to invoke techniques beyond these states. As a result, they will
apply in two corners of Fig. 2.1, and will be of no obvious use in the third one
(’Gauge theories’).

(a) SUGRA solutions
As demonstrated in Ref. [13] one possible view on boundary states is to
see them as classical sources for the bulk fields. The physical picture
is that of a corresponding D-brane emitting massless closed strings. In
turn, the latter generate the associated closed string background, i.e.,
the solution to the field equations. This viewpoint makes it clear that
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only those fields that couple to the D-brane stand a chance of being
nontrivially excited in the solution.

(b) Boundary conditions
’New’ types of D-branes show up in nongeometric CFT phases of string
theory. With an exact closed string CFT at hand, there exists a standard
procedure to construct consistent boundary states. This recipe will be
reviewed in Section 4.2. In view of the lack of a spacetime interpretation,
boundary conditions, and accordingly, boundary states, constitute the
easiest defining principle of D-branes in such phases. Since they are
designed so as to encode the open strings associated to such D-branes,
the boundary states are in fact the only known available tool to find out
about the gauge theory spectrum [14].

2.2 Elements of CFT : (not) a primer

Quantum theory is the physicist’s way to deal with the mathematical con-
cept of Hilbert spaces (of states), particularly so for quantum field theories
(QFTs). Moreover, the introduction of correlation functions assigns a certain
reality to the Hilbert space, at least in the physicisist’s mind. To ’solve a QFT’
is commonly understood as to find its spectrum and the exact correlation
functions. For generic QFTs, including those that are considered to be realis-
tic, this program is presently beyond reach: we have to do with perturbation
theory, supplemented with nonperturbative insights in fortunate cases.

An operator-state correspondence, i.e., a set of maps

Hilbert space H ↔ Algebra B
state |ψ〉 (vertex) operator Oψ

allows one to trade operators for states and vice-versa, depending on needs.
This means in particular that properties of states ought to have a counterpart
in operator terms and the other way around. For example: gauge-invariant
states in BRST-quantised theories are created by operators that (anti-)commute
with the BRST-operator. In QFTs, subsets of single operators get organ-
ised into quantum fields, resulting in an increased degree of transparancy.
Loosely speaking4, quantum fields are B-valued functions on the relevant
space(-time).

Symmetry generators form an interesting subclass of the algebra of oper-
ators. They close into a subalgebra, henceforth referred to as the symmetry

4A more precise statement is that quantum fields are sections of a sheaf of operator alge-
bras. If anything, this can hardly be argued to shed any new light on the present discussion.
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algebra, A. Further, it is a fact that the Hilbert space should furnish a repre-
sentation of A.

In the remainder of this section, we shall review some consequences of
these ideas in the context of two-dimensional conformal field theories. Since
this is not meant to be a primer, the interested reader is referred to the excel-
lent textbook, Ref. [15].

2.2.1 Algebraic structures

Hilbert space and chiral algebra

Consider chiral CFT on the complex plane C first. This comes with an al-
gebra B of operators that have no dependence on z̄, the anti-holomorphic
coordinate in a patch around the origin of C. Of particular importance is the
holomorphic stress-tensor, T(z). It is any operator that has an OPE with itself
of the form:

T(z)T(w) ∼ c/2
(z −w)4 +

2T(w)
(z −w)2 +

∂T(w)
(z −w) , (2.2.1)

where c is a c-number, the central charge. In terms of the modes Ln of T ,
Eq. (2.2.1) says that they obey a Virasoro algebra with central charge c.

The algebra B of operators in the CFT decomposes into (Virasoro) quasi-
primary, primary and descendant fields (operators). These notions attributed
to fields refer to properties of the latter under OPE product with T . Primary
operators are characterised as those that obey

T(z)φ(w) ∼ hφ(w)
(z −w) +

∂φ(w)
(z −w) (2.2.2)

where the c-number h is called the conformal dimension ofφ. In the operator-
state correspondence, such operators create highest-weight states of possibly
reducible Virasoro modules. Among primary operators, the unit operator
φ0 = , and its corresponding module5 [φ0], the so-called vacuum-module,
are singled out: the chiral (symmetry) algebra A is defined through operator-
state mapping as that particular set of operators in B corresponding to the
states in [φ0]. Besides containing T , [φ0] enjoys the following properties:

(a) (locality) All operators in A have integral conformal dimensions;

(b) A[φ] ⊂ [φ] for any A-module [φ] by definition, implying tacitly that
A should be local wrt. operators in [φ].

5Modules will conventionally be labelled by their primaries here and below.
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Since T(z) is part of the symmetry algebra of a chiral CFT, the chiral Hilbert
space decomposes into Virasoro modules, i.e., formally one may write

H chiral =
⊕
α
nα[φα] , (2.2.3)

where nα denote incidental multiplicities and the sum runs over primaries.

Of all possible correlators in a (chiral) CFT, a special rôle is played by the
three-point chiral blocks (3-point functions). They encode the structure of the
algebra, that is, the OPEs that turn A into an associative operator algebra.

A less refined but useful concept arises from taking operators φ(α) inside
modules [φα], and considering 3-point blocks

〈φ(α)φ(β)φ(γ)〉 . (2.2.4)

For fixed α,β, γ, let Nαβγ count the number of independent sets of such op-
erators yielding a nonvanishing result. From this data an algebra of modules
is defined by

[φα]× [φβ] = Nαβγ[φγ] . (2.2.5)

Eq. (2.2.5) defines the so-called fusion algebra. From its very definition this
algebra comes with the following properties:

(a) commutativity : NαNβ = NβNα, i.e., the {Nα} are normal and may be
diagonalised simultaneously.

(b) associativity : NαNβ = NαβγNγ , i.e., the {Nα} furnish a representation
of the fusion algebra Eq. (2.2.4).

The matrices used here are defined as (Nα)βγ := Nαβγ .

In the present text, the mild assumption will be made that the relevant
CFTs have a sufficiently nice split into chiral and anti-chiral parts:

(a) The full CFT Hilbert space has a decomposition

H =
⊕
α,β
nαβ[φα]⊗ [φ̃β] , (2.2.6)

with nαβ ∈ N0 denoting incidental multiplicities.

(b) Correlation functions (n-point conformal blocks) are finite sums of chiral-
anti-chiral conformal blocks.
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Modular invariance and partition functions

Hitherto, the CFT has been assumed to live on the complex plane. One is then
lead to ask the question

“What can one learn from the corresponding CFT on the torus ? ”

As it turns out, the nontrivial input here resides in one-loop modular in-
variance. Recall that the modular group PSL(2,Z) consists of reparametrisa-
tions that are globally defined on the torus. In that respect, it is the counter-
part of SL(2,C) on the plane. Since the physics can only be ignorant about
any choice of coordinates, no outcome of any meaningful computation must
depend on this choice. Particularly so, the torus vacuum amplitude had better
be modular invariant.

In the operator formalism, the torus amplitude is expressed as a trace over
the Hilbert space. As such it is equally referred to as the closed string par-
tition function. The idea here is that the chiral (anti-chiral) states are propa-
gated over a Schwinger time τ (τ̄) by resp. Hamiltonians L0 (L̄0) before being
glued so as to produce the trace. According to the closed-string Hilbert space
decomposition Eq. (2.2.6) one finds a partition function

Z1−loop =
∑
αβ
χα(q) nαβ χ̃β(q̄) . (2.2.7)

The chiral Virasoro characters entering this expression are defined as

χα ≡ Tr [φα](q
L0− c

24 ) , (2.2.8)

where q = eiπτ and τ is the torus modular parameter.
The modular PSL(2,Z) group has a concise presentation in terms of gen-

erators and relations : 〈S, T |S2 = , (ST)3 = 〉. The geometric action of S, T
on the torus induces a representation on the Virasoro characters :

χα(−1
τ
) =

∑
β
Sαβχβ(τ) ; (2.2.9)

χα(−τ + 1) =
∑
β
Tαβχβ(τ) ; (2.2.10)

Actually, the relevant relations here are 〈S,T |S2 = C, (ST )3 = 〉 where C is
charge conjugation, such that the space of characters carries only a projective
representation of PSL(2,Z), generically.

From this modular action on the chiral and anti-chiral building blocks of
Z1−loop, modular invariance is directly observed to impose a strong constraint
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on the operator content of the theory. More precisely, it restricts the allowed
chiral-anti-chiral gluings in Eq. (2.2.6). This furnishes a precise answer to the
question raised at the beginning of the present section.

As remarked earlier, the normal property of the fusion matrices Nα makes
them simultaneously diagonalisable. The highly nontrivial fact is that the
modular matrix S is the object actually doing the job:

Nαβγ =
∑
δ
Sαδ

(
Sβδ
S0
δ

)
(S−1)δ

γ . (2.2.11)

Eq. (2.2.11) is known as the Verlinde formula, and has been demonstrated to
hold for rational theories [16]. In Section 3.2.1 a similar although modified
expression will be found to exist for orbifold theories.

2.2.2 Moduli spaces

Conformal field theories with central charges c ≥ 1 tend to come in contin-
uous families : rather than being isolated, they allow for deformations to
‘nearby’ CFTs. In such cases one says that there is a moduli space of confor-
mal field theories. Let me review an easy example here, that of the free com-
pact boson (c = 1) [17]. However simple, the corresponding moduli space
will already illustrate generic features of CFT moduli spaces.

In the CFT of a free boson compactified on a circle, the circle radius R is
an obvious free parameter, as can be seen from the lagrangian

L = − R
2

2α′
(∂φ)2 . (2.2.12)

The moduli space Mc=1 of inequivalent CFTs thus appears to be the real line.
However, this conclusion is too quick in two ways. Firstly, there is an invo-
lution φ → −φ which is actually a symmetry; it leaves the Virasoro algebra,
in particular its central charge c = 1 untouched. There exist therefore two
lines of CFTs: the original circle theories and the same theories orbifolded by
the Z2 symmetry. They are parametrised by real moduli Rcirc, (Rorb), respec-
tively. Secondly, T-duality R ↔ α′/R relates isomorphic theories. As a result
there are only two half-lines of inequivalent theories; what’s more, a careful
analysis reveals that these branches actually touch as depicted in Fig. 2.2. A
set of three isolated CFTs then conjecturally completes the full c = 1 moduli
space [17].

From the two-dimensional point of view, perturbations correspond to mar-
ginal operators, which have conformal weights (h, h̃) = (1,1) by definition.
In the superstring theory, those will be interpreted as massless scalars.

Which features should catch your eye here ?
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Figure 2.2: The moduli space of c = 1 conformal field theories consists of
two branches touching at a multicritical point.

(a) The moduli space looks like a manifold at generic points, meaning that
the number of exactly marginal operators is locally constant.

(b) There are multicritical points where new branches develop, due to the
appearance of new exactly marginal operators in the CFT. In the free
boson case, this is the point where the orbifold and circle branches join.

(c) There are orbifold singularities. This happens whenever there is an ”en-
hanced” symmetry that relates otherwise inequivalent deformations. As
an example of this phenomenon, you can think of the end-point corre-
sponding to the critical radius in the c = 1 series where a δR deforma-
tion is equivalent to a −δR one.

Evidently, free bosons only comprise a tiny subclass of all possible con-
formal field theories. The seemingly interesting question

“What is the moduli space of all CFTs ?”

is presently too ambitious to allow for an answer, unfortunately. Slightly low-
ering our ambitions, we should rather hope to find a satisfactory description
of subsets at most of the total CFT moduli space. Therefore, a more modest
issue concerns finding appropriate choices of discrete data shared by a given
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family of CFTs, such that the family becomes tractable while retaining interest
beyond triviality. Given that a (S)CFT is specified by 1) its central charge, 2)
the spectrum of primaries {(h, h̃)}, possibly with multiplicities, 3) the OPE’s
and 4) the amount of 2d supersymmetry, it is reasonable to stratify the com-
plete moduli spaceM by the first two pieces of data, while the remaining two
are allowed to vary over the stratum. As an example, one may wish to study
the moduli space of c = 6, N = 4 SCFTs (see e.g., Ref. [18]).

Some caution is appropriate here. Of all marginal operators, it is only
the exactly marginal ones that effectively give rise to nearby conformal field
theories. In other words, marginal but not exactly marginal deformations
spoil conformal invariance. A necessary condition for exact marginality of Oi
is that

〈OiOiOj〉 = 0, (2.2.13)

for all marginal Oj. Infinitesimal deformations by such Oi yield the tangent
space to the moduli space in the point corresponding to the undeformed the-
ory. In this light, the condition Eq. (2.2.13) must be viewed as an integrability
condition. If it is satisfied, there is no obstruction for these first-order de-
formations to be extended to second order. It is not clear, however, if the
condition guarantees the absence of any higher order obstructions. In the
remainder of this text, though, I will adopt the point of view of a ’working
physicist’, and not bother about this subtle point. In what follows, I will be
concerned mostly with the dimension of the (stratum of the) moduli space
only, which is locally given by the number of unobstructed first-order defor-
mations.

2.2.3 Worldsheet and spacetime SUSY

In this section we wish to expose some tight connections between worldsheet
and target space phenomena, namely issues involving supersymmetry. There
are three points to make:

(a) Which space-time geometries allow worldsheet supersymmetric versions
of bosonic nonlinear sigma-models?

(b) Does worldsheet SUSY yield space-time supersymmetry ?

(c) In a string compactification on a manifoldM, say, does the requirement
of (extended) space-time supersymmetry constrain the possible classes
of worldsheet theories ?
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In some respect, the questions (b) and (c) can be thought of as each other’s
converses. I will provide you with an outline of an answer to the first two
questions, postponing a discussion of the (c) to Section 3.1.

A. Supersymmetric σ -models
Before answering the first question, recall the concept of nonlinear bosonic

σ -models. They involve maps φ : Σ → X, describing embeddings of the two-
dimensional worldsheet Σ into a target manifold X. At the classical level, the
maps should be such that they extremise the action

S =
∫
Σ
||∂φ||2 +φ∗B , (2.2.14)

which is the familiar Polyakov action for bosonic strings; the second term is
the coupling of the string to B ∈ Ω2(X), the Kalb-Ramond two-form on X.
The natural question that comes up here: can this model be made supersym-
metric, and if not generically so, which are the conditions on X in order that
the programme should work? This issue was dealt with a long time ago [19].
Therefore, we only give a summary of a well-known answer. First note that
the supersymmetry will always be assumed to be rigid, that is, its parame-
ters are constant on Σ. The amount of supersymmetry, denoted here as N ,
is shorthand for the nonchiral (N,N), where N counts the number of con-
served real supercharges. Also, the B-field is set to zero. Since our interest
will primarily be in nonchiral supersymmetric models, I shall further restrict
to those only.

A beautiful analysis then reveals that minimal worldsheet supersymmetry,
N = 1, imposes no constraints on the Riemannian manifold M. Minimally ex-
tended supersymmetry, N = 2, on the other hand, requires that the manifold
be complex Kähler, while to realise N = 4, M must be hyperkähler. The latter
two cases trivially impose a condition on the dimension of the target mani-
fold, which has to be a multiple of two (N = 2) or four (N = 4). Prototypes
of such spaces are PN (Kähler) and the Eguchi-Hanson gravitational instan-
ton (hyperkähler). The main lesson to be drawn from this: every extension
requires the existence of an independent complex structure on X (see Sec-
tion 3.1.1 for an elementary review of complex structures.) Since closure of
the algebra of two complex structures automatically generates a third one:
N = 3 → N = 4.

So far for the supersymmetry. What about conformal invariance? In the
absence of torsion ( B-field ), absence of the conformal anomaly in the two-
dimensional quantum theory requires that the target space metric be Ricci-
flat, to leading order in α′. All this is summarised as follows, for compact
manifolds:
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SCA ↔ M
N=1 Riemannian
N=2 Calabi-Yau
N=4 Hyperkähler

In fact, there is an intimate connection between geometrical objects, complex
structures, on the one hand, and enhanced (super)symmetry currents in the
superconformal algebra (SCA) on the other. This correspondence will be fur-
ther explored when discussing Riemannian holonomy groups in Section 3.1.1
(see also Section 4.1 for an explicit example).

B. From the worldsheet to space-time
Let us next turn to space-time supersymmetry. Careful analysis will reveal

that in order that there be space-time supersymmetry, one has to start with
a SCA that is an extension of the N = 1 SCA. The main ingredients are GSO-
projection and the existence of spectral flows. The absence of the latter in
purely N = 1 settings is responsible for the absence of space-time supersym-
metry there.

For the reader’s convenience, we recall some facts about N = 2 ⊂ N = 4
SCAs and their representations. As is well-known, the N = 2 SCA contains
a U(1) current J and supercurrents G± charged positively (negatively) under
J . Upon introduction of an auxiliary boson φ, such that J = i

√
c/3∂φ one

constructs a spectral flow operator Uint1 = eqmax

√
3/cφ, in a CFT with central

charge c. When realised on the Hilbert space by some unitary operator, the
flow takes NS → NS, R → R sectorwise. This is therefore called unit spectral
flow. A half-spectral flow operator Uint1/2 is defined as a square-root of Uint1 ,
i.e., qmax → qmax/2. The newly obtained operator obviously takes NS ↔ R. In
fact, the more precise statement here is that in abstract CFTs the free theory
notions of ’NS’ and ’R’ (as resulting from boundary conditions) are replaced by
the respective periodicities of G±. Notice further that the conformal weight
of Uint1/2 equals h = d

8 .
A consistent combined space-time and internal CFT has respective central

charges cst = 15/2 − 3d, cint = 3d where d is the abstract CFT equivalent of
the complex dimension of an internal geometric manifold. With these con-
ventions, qmax = d, above. The total half-spectral flow is the operator

U1/2 = e−
ϕ
2 S Uint1/2 , (2.2.15)

constructed from the bosonised superghost, free-fermion space-time spin-
field, and internal parts. In particular, the NS massless (’ground’) states, cor-
responding to the operators

O0 = e−ϕψ int (2.2.16)
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yield upon OPE with U1/2 Ramond states. The latter are easily verified to be
massless from the conformal weights. This should not come as a surprise :
after all, half spectral flows correspond to space-time supersymmetry gener-
ators. In the left-right combined (closed string) sector, massless NS-NS states
are mapped to massless R-NS states, i.e., gravitini states, by left half-spectral
flow. Upon further left flow these are taken back to the NS-NS sector.

In generic cases, there will be more than one independent spectral flow
(with corresponding half flow) in the internal CFT. That is, not all spectral
flows arise from the specific N = 2 φ boson chosen. On the other hand,
the SCAs of Spin(7) and G2 compactifications have been demonstrated to be
particular extensions of the N = 1 SCA by an Ising, and tricritical Ising model,
respectively. Both extensions were further shown to possess a corresponding
Ising (tricritical Ising) spectral flow operator. In all, we have thus found the
following:

Fact 2.1

Type II symmetric compactifications with an internal SCA that is at
least N = 1 extended by n spectral flows, yields N = n space-time
supersymmetry.

As such it is a plain observation that (half) spectral flows are the abstract
CFT counterparts of parallel spinors in geometric compactifications, (see Sec-
tion 3.1.1).

2.2.4 Example 2.1 : Free fermions and SO(n)1 current algebra

A nice example to illustrate part of the ideas is provided by a system of 2n
free Majorana-Weyl fermionsψi (i = 1, . . .2n). The energy-momentum tensor
is T = ∑

i ψi∂ψi and as such the central charge equals c = n. One may
now build fermion bilinears Jij = ψiψj ; they are verified to realise an affine
SO(2n) algebra at level k = 1 :

Jij(z)Jkl(w) ∼ 1
(z −w)2 + f

ij,kl
mn

Jmn

z −w , (2.2.17)

where f ij,klmn are the SO(8) Lie algebra structure constants. In short, the
algebra of operators B is generated by and {∂kψi}k≥0. The chiral algebra is
the subalgebra A = 〈 , ∂kJij〉k≥0.

The irreducible A-modules are obtained with equal ease: they are four in
number, to know [ ], [ψi], [S], [C] where the primary (ground state) labels
the module. In more standard notation, they are also denoted as (o, v, s, c)
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or (NS−, NS+, R−, R+), respectively. Note that they are in one-to-one corre-
spondence with the SO(8) Lie-algebra conjugacy classes, as a consequence of
their ground states building the corresponding highest-weight representation
of the Jij0 .

Finding out about the modular representations on the affine characters
χa (a = o,v, s, c) precedes finding out about modular invariants. From stan-
dard manipulations, it is found that,

T(2n) = diag (−e−
nπ i
12 , e−

nπ i
12 , e

nπ i
6 , e

nπ i
6 ) ,

S(2n) = 1
2

⎛⎜⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 (−i)n −(−i)n
1 −1 −(−i)n (−i)n

⎞⎟⎟⎟⎠ . (2.2.18)

For simplicity, let us restrict attention to the case n = 4, that is, SO(8)1.
The significance of the latter in superstring theory stems from strings mov-
ing in a flat Minkowski background, where the ψi are actually the physi-
cal light-cone worldsheet fermion degrees of freedom. In fact, it is only a
small step to the covariant SO(9,1) formalism. In the latter, taking the su-
perghosts β,γ from the worldsheet superdiffeomorphisms into account, the
combined SO(9,1)1×Cβγ characters coincide with their SO(8)1 counterparts.
This should not come as a surprise, since the superghosts thus effectively
cancel the light-cone fermion (unphysical) contributions. However, there is a
subtlety here : the rôles played by the SO(8)1 character o (v) are taken over
by the covariant v (o), respectively. Also, the spinorial s, c of SO(8) acquire a
minus sign in the SO(9,1) case.

It is a well-established fact that the SO(9,1)1 × Cβγ6 (”superstring”) the-
ory allows four inequivalent torus modular invariants, to know IIB/IIA,0B,0A
theories, with respective one-loop partition functions:

ZIIB = |χv − χs|2 , (2.2.19)

ZIIA = (χv − χs)(χ̄v − χ̄c) , (2.2.20)

Z0B = |χ0|2 + |χv |2 + |χs|2 + |χc|2 , (2.2.21)

Z0A = |χ0|2 + |χv |2 + χs χ̄c + χc χ̄s . (2.2.22)

From Verlinde’s formula Eq. (2.2.11) and the explicit S modular matrix, it
only takes a few lines to find [16]:

Nabc =
∑
m

(S(8))ma (S(8))mb ((S(8))mc )∗
(S(8))mv

(2.2.23)

6Only the corresponding worldsheet fermions are being considered, here. As such, heterotic
string considerations do not enter the discussion at any point.
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= 2
∑
m
(S(8))ma (S(8))

m
b (S(8))

m
c .

With this expression, the fusion rules can be verified to be given by

[v]× [a] = [a] , [a]× [α] = [v] , [o]× [s] = [c] ,
[o] × [c] = [s] , [s]× [c] = [o] ,

for a = o,v, s, c as before. That is, we have niv a = δia, Naai = δiv , Nocj = δis ,
and so on. These fusion rules coincide with the algebra of the conjugacy
classes o,v, s, c of SO(8) representations where o and v have been exchanged
according to the discussion of the previous paragraph (see e.g., Refs. [20, 21,
22]).



32 Pointers



3

Landscapes

Geometrical aspects of strings and D-branes constitute the central theme in
the present chapter. Even though most of the material has been known for
quite some time, facts and fiction seem to be spread throughout the existing
literature. Here, we aim at providing a useful overview/collection of the state
of affairs. Besides this, a number of examples are worked out explicitly, which
should help the reader to digest the presented material.

String theory possesses three potential probes of geometries: point par-
ticles, closed strings and D-branes. In turn, these are naturally linked with
classical geometry, conformal field theories and gauge theories, respectively.
This chapter is organised accordingly, and treats each of the mentioned top-
ics more or less separately.

In Section 3.1, aspects of classical geometry are reviewed. After a general
discussion of structures and moduli spaces, issues regarding orbifold spaces
receive particular emphasis, e.g. desingularisation. In addition, a digression
on special Riemannian holonomy and how this is reflected in superconformal
algebras (SCAs) then sets the stage for Section 3.2.

In that section, a particular desingularisation technique, namely, blow-up,
is reviewed from the CFT viewpoint. Orbifold CFT will be argued to organise
the classical blow-up. Also given is a preliminary explanation why the CFT re-
mains well-behaved in the orbifold limit, where point particle theory does not.
As a final topic, abelian Calabi-Yau threefold singularities are approached via
toric geometry. Armed with this tool, we can visualise a remarkable corre-
spondence between CFT and geometry in a number of explicit examples. At
the same time, the latter must compensate the brevity of the general exposi-
tion on toric methods.
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Finally, Section 3.3 gives an elementary discussion of D-branes as probes
of orbifold geometry. Certain classes of gauge theories will be observed to
reproduce the target space geometry via their associated moduli spaces (of
vacua), a remarkable feature at first sight. Further, precisely these gauge the-
ories will also figure in Chapter 5, where they will be seen to provide a physical
realisation of a mathematical construct, known as McKay correspondence.

3.1 From afar – The classical geometry

3.1.1 Elements of differential and algebraic geometry

A. Hierarchy of structures

Below, we give a quick account of some ‘structures’ on manifolds. The choice
is motivated by further developments in the present text, rather than per-
sonal preference. A manifold M will be understood to be in the C∞-category,
i.e., there is an underlying topological (Haussdorff) space admitting a cover-
ing with C∞ transition functions. M is a Riemannian manifold if endowed
with a metric tensor g; we reserve the obvious notation (M, g) for such mani-
folds. With or without a metric specified, a manifold can be further decorated
with structures, most conveniently encoded in associated tensorial quantities
defined on M.

Complex structures
Of the various equivalent notions of complex structure, the following one is

found most convenient. Let I be a section of T∗M⊗TM, for a given manifold
M; then I is a complex structure on M, provided that

I2 = −1 , (3.1.1)

NI(−,−) = 0 , (3.1.2)

where the Nijenhuis tensor NI is defined in terms of the Lie-bracket [−,−] of
vector-fields:

NI(v,w) ≡ [v,w]+ I([Iv,w]+ [v, Iw])− [Iv, Iw] . (3.1.3)

Plainly, at each tangent space TpM, I restricts to an endomorphism Ip, that
squares to minus the identity, and satisfies some integrability condition. As
such, Ip introduces the notion of ‘i’ locally on TpM, endowing it with a com-
plex structure. A manifold with a complex structure is called a complex man-
ifold, and is denoted as (M, I). As a real manifold, clearly dimM must be
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even. The prototype of a complex manifold is PN , the complex projective
N-plane.

Complex-symplectic structures
A complex-symplectic structure (I,ωC) consists of a complex structure and

a closed (2,0)-form ωC, such that ωmC is a non-vanishing (2m,0)-form. A
complex 2m-dimensional manifold M endowed with this structure is a com-
plex symplectic manifold.

Observe that none of the structures introduced so far refers to any met-
ric. The existence of a complex structure I is sufficient to fix the notion of
(p, q)-forms: I defines a split of the complexified cotangent bundle into holo-
morphic and anti-holomorphic subbundles:

T∗CM := T∗M⊗R C = T∗hM⊕ T̄∗hM. (3.1.4)

A (p, q)-form is an element of Γ (X,ΛpT∗hM⊗ ΛqT̄∗hM). The notation em-
ployed here, is standard: Γ (X, E) is the space of sections of a vector bundle
E π→ X. No reference to any metrics being made here, complex and complex-
symplectic structures are suitable concepts in algebraic geometry.

Next introduce metrics g. Here and below, ∇ will be the torsion-free con-
nection derived from g.

Kähler structures
A metric g on a complex manifold (M, I) is hermitian provided g(I−, I−) =

g(−,−); the latter property expresses the compatibility between the complex
and metric structures. For an hermitian metric to be Kähler, any of the fol-
lowing equivalent conditions must hold:

∇I = 0 ; (3.1.5)

∇K = 0 ; (3.1.6)

dK = 0 , (3.1.7)

where in the latter two equations K ∈ Γ (X,Λ2T∗M) is the Kähler form associ-
ated to I : K(−,−) := g(−, I−). A nice property of Kähler manifolds resides
in their harmonic analysis. From the observation that Δd = 2Δ∂̄1, it follows

1As well-known, Δd ≡ d†d+d d†, and likewise for Δ∂̄ . The adjoint is defined w.r.t. the metric
g.
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that d-harmonic forms are ∂̄-harmonic and vice-versa. As a consequence, the
de Rham (d-) cohomology has a Hodge decomposition (into Dolbeault (∂̄-) co-
homology):

Hrd (M,C) = ⊕p+q=r H
p,q
∂̄ (M) . (3.1.8)

The betti numbers can be refined likewise : br =
∑
p hp,r−p, and the hodge

numbers can be arranged into a diamond (e.g. for a 3-dimensional manifold):

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

(3.1.9)

Hyperkähler structures
A hyperkähler structure (Ia, g) consists of a triplet of complex structures

Ia that close into a quaternion algebra,

Ia Ib = −δab + εabcIc ; (3.1.10)

furthermore, g must be Kähler wrt. each of the Ia. Notice that each Ia gives
rise to a corresponding Kähler form Ka, by lowering an index with the metric.
Examples here are the K3 surfaces.

B. Manifold moduli spaces

A superior insight in manifolds with structures is often gained from consid-
eration of continuous familiesMt of those in one go, rather than the study of
isolated examples. Meanwhile, this approach partially solves manifold classi-
fication problems.

For example, Riemann surface theory is probably singled out as the case
where this program has proven extremely successful. Topologically speaking,
compact Riemann surfaces without boundaries are completely specified by
an integer, their genus g. Endowing them with complex structures, however,
makes a finer distinction possible. It is a well-known fact that the space of
compact genus g ≥ 2 inequivalent complex manifolds is parametrised by
3g−3 complex numbers 2. The latter are viewed as local coordinates (moduli)
of the associated moduli spaceMg , which thus has complex dimension 3g−3.

2For g = 1, it is a single complex number.
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Moreover, beyond this local exploration, a global description of Mg is known
as an orbifold by the discrete mapping class group (see e.g., Ref. [23]).

For higher-dimensional manifolds, the situation is generically less favour-
able. Given some manifold M with structure, mathematicians would ideally
want to find the moduli space of such structures on M. Contrary to naive
expectations, perhaps, this program tends to fail if the structure is too rich.
For example, the moduli spaces of hyperkähler structures are not under com-
plete control (yet). If necessary, therefore, part of the structure is typically
disregarded. In the hyperkähler example, the hypercomplex structure is sup-
pressed, and the manifolds can be viewed as complex manifolds only. Even
though the question may now find an answer, the latter potentially fails to
match the objective: e.g., with the Kähler class fixed over the family, some de-
formations of the complex structure potentially destroy the Kähler property
initially present. From this example, it must become clear that tuning the
moduli problem, i.e., formulating a problem that possesses a right balance
between tractability and relevance (genericness), is prior to any satisfactory
solution.

It is hoped that these have given the reader a flavour of the vast and
difficult subject. Below, some general aspects concerning two particular in-
stances, the moduli spaces of Kähler and complex structure deformations are
briefly reviewed; so far, in string theory they have played the dominant rôles.

Kähler cone
What does it mean to consider all possible Kähler structures on a manifold

with a given complex structure I? Stated otherwise, how can one parametrise
the set of viable metrics that are Kähler wrt. I ? The answer is most naturally
phrased in terms of the Kähler forms. Combine the following two ingredients:

(a) Theorem 3.1 (Wirtinger) On anm-dimensional Kähler manifoldMwith
Kähler form K, the volume Vol(M) = 1

m!

∫
MKm is measured by the ap-

propriate wedge power of K.

(b) Any n-dimensional complex submanifold of a Kähler manifold is Kähler
in its own right. From the closedness of ∧nK, it follows that volumes
are topological invariants of the submanifolds: they depend only on the
homology class inside H2n(M). Of all real manifolds in a given such
class, the holomorphic submanifolds are the volume-minimising ones.

Since volumes are real, positive quantities, we must have that
∫
C Kn > 0 for

n = 1, . . . ,m, and all C for which the expression makes sense. This con-
straint makes the geometrically relevant moduli space appear as a real con-
vex polyhedral cone of dimension h1,1(M). This real-cone structure arising
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from classical geometry is naturally complexified in string theory, where any
Kähler form K acquires an imaginary part from the Kalb-Ramond two-form
field, J = K+ iB. As such, the string theory complexified-Kähler moduli space
has complex dimension h1,1(M).

An alternative approach, based on infinitesimal metric deformations, is
outlined in Ref. [24].

Complex-structure moduli space
As to deformations of complex structures, the story goes under the name

of Kodaira-Spencer theory, a nice account of which can be found in, e.g.,
Ref. [25]. In short it entails the following facts: take ∂̄ as a measure of the
complex structure. A new operator is then formed by ∂̄′ := ∂̄ + A · ∂, where
A is a (0,1)-form valued in (1,0) vectorfields, i.e., A = Aij̄∂i ⊗ dz̄j̄ in a holo-
morphic frame. However, there is an integrability condition here, namely
(∂̄′)2 = 0; it is equally well expressed as

∂̄A+ [A,A] = 0 , (3.1.11)

where [−,−] involves both wedge product and bracket of vector-fields. Sec-
ond, some would-be deformations can be undone by reparametrisations, and
should not count as true deformations accordingly. In a finite deformation,

A =
∑
n≥1

λn A(n) , (3.1.12)

the A(1) part is identified as the infinitesimal (first-order) deformation. To
this order, the integrability condition reads

∂̄A(1) = 0 , (3.1.13)

whereas A(1) = ∂̄ω should be discarded since they are generated by reparam-
etrisation. The upshot is that first-order complex structure deformations of
a manifold M are given by TM -valued ∂̄ cohomology.

The hard issue, here, is to check whether first-order deformations are un-
obstructed, i.e., that given some first order A(1), a corresponding finite A can
actually be found to all orders. Second point is to see if the A thus generated
is ‘unique’, that is, modulo the reparametrisation ambiguity. For c1 = 0 com-
plex manifolds these facts were demonstrated by Tian and others [26], so the
Calabi-Yau complex-structure moduli space is unobstructed.

Given that M is Calabi-Yau, the (n,0)-form can be used to set up isomor-
phisms between tangent-bundle-valued cohomology and Hodge cohomology

φ(q,p) : Ω0,p(∧qTM)→ Ωn−q,p(M) , (3.1.14)
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whereby the (n,0)-form is evaluated on the wedge-product of vector fields.
It follows that complex-structure deformations are in one-to-one correspon-
dence with (n− 1,1) forms.

In the process of deformation, the original holomorphic (n,0) form Ω will
generically pick up components of mixed Hodge type. With a deformation A
it may be shown that e.g. for n = 3 [25]:

Ω′ = Ω+φ(1,1)(A)+φ(2,2)(A∧A)+φ(3,3)(A∧A∧A) . (3.1.15)

Therefore, complex-structure deformation is intimately tied to the middle co-
homology.

C. Holonomy, SUSY and SCAs

For a long time, it was believed that compact manifoldsM had to have special
holonomy groups Hol0(∇) in order to make interesting candidates for super-
string compactification. Nowadays, mechanisms such as brane-world scenar-
ios have been proposed to side-step the issue of compactification. Even so,
the issue of special holonomy is not completely out of the question, as briefly
explained in the introduction.

Geometries with reduced holonomy
Recall first what (reduced) Riemannian holonomy groups Hol0(g) are:

Hol0(g) = {Pγ|γ a contractible loop based at p} , (3.1.16)

where Pγ is the parallel transport map, Pγ ∈ End(TpM). Note that Hol0(g)
is not really an abstract Lie group, but rather a concrete matrix subgroup of
GL(n,R), i.e., the group is specified by the natural representation in the tan-
gent space. Also, the matrix representatives get conjugated inside GL(n,R)
into an isomorphic group if some other base point is chosen.

Which are the subgroups of GL(n,R) that can occur as restricted holon-
omy groups of a Riemannian connection on an n-dimensional manifold?

First observe that since ∇g = 0, the holonomy group must be a subgroup
of O(n,R) only, or even SO(n,R) if the manifold is oriented. Excluding direct-
product metrics and maximally symmetric spaces, the complete answer is
provided by Berger’s list in Table 3.1 [27].

A few useful observations here:

(a) In Table 3.1, the Kähler metrics are those with holonomy groups U(m),
SU(m), Sp(m), while the Ricci-flat ones have holonomy inside SU(m),
Sp(m), G2, Spin(7).
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Holonomy group Dimension Features

SO(m) m oriented
U(m) 2m Kähler
SU(m) 2m Calabi-Yau
Sp(m) 4m Hyperkähler

Sp(1).Sp(m) 4m quaternionic-Kähler
G2 7 exceptional, Joyce-7

Spin(7) 8 exceptional, Joyce-8

Table 3.1: Reduced holonomy groups and the (real) dimensions of the mani-
folds realising them.

(b) Considering the division algebras Rm,Cm,Hm,O of real and complex
numbers, quaternions and octonions, respectively, the groups O(m),
U(m), Sp(1).Sp(m), Spin(7) are precisely the respective automorphism
groups. Moreover, an appropriate determinant-one like constraint re-
duces them to SO(m), SU(m), Sp(m), G2.

Granted the established fact that manifolds with holonomy groups that
allow parallel spinors can actually be shown to be spin, how do covariantly
constant tensors and spinors relate to special holonomy? The following the-
orem deals with that question:

Theorem 3.2 Holonomy singlets are in one-to-one correspondence with covari-
antly constant tensors [28] (spinors).

This being given, all that is further needed, is how the holonomy is embed-
ded, i.e., how Hol(g) ↩ SO(d) for a real d-dimensional manifold. Table 3.2
contains a schematic overview (for d = 7,8).

Holonomy 8v 8s 8c (N+, N−)
Spin(7) 8 1⊕ 7 8 (1,0)
SU(4) 4⊕ 4̄ 1⊕ 1⊕ 6 4⊕ 4̄ (2,0)

G2 1⊕ 7 1⊕ 7 1⊕ 7 (1,1)
Sp(2) 4⊕ 4 1⊕ 1⊕ 1⊕ 5 4⊕ 4 (3,0)

SU(2)× SU(2) (4,0)
SU(3) 1⊕ 1⊕ 3⊕ 3̄ (2,2)
SU(2) (4,4)

Table 3.2: Embeddings of the holonomy representations. (N+, N−) counts the
(positive,negative)-chirality MW -spinors in d = 2.
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An easy way to find out about the spinor embeddings in the complex
cases (excluding G2, Spin(7)) employs the correspondence between spinors
and (p,0)-forms on complex n-manifolds with holonomy inside SU(n). In a
holomorphic basis, let unbarred greek indices label holomorphic coordinates
and vice-versa, while taking roman labels for the underlying real coordinates.
With this convention, define γ = ∏n

m=1 γm, and let a covariantly constant
spinor ζ (which is known to exist, see the theorem on p. 40) be chosen such
that

∇ζ = 0 ;

γζ = ζ .

Then, an arbitrary spinor χ has the following decomposition [29]:

χ = φ(0)ζ +φ(1)μ γμζ + . . .+φ(n)μ1μ2...μnγ
μ1μ2...μnζ , (3.1.17)

with coefficients φ(r) ∈ Ω0,r (M). It follows that if Q is the holonomy rep-
resentation of the holomorphic cotangent bundle (Q + Q̄ ↩ 2nv ), then the
spinor transforms as

n⊕
p=0

ΛpQ . (3.1.18)

Moreover, there is a split into chiral and anti-chiral spinors (for convenience,
expressed in terms of the relevant bundles):

Γ (M, Spin+) ≈
⊕
q even

Ω0,q(M) ; (3.1.19)

Γ (M, Spin−) ≈
⊕
q odd

Ω0,q(M) . (3.1.20)

From this data, the spinor holonomy representations in Table 3.2 follow at
once. Notice, e.g., that one of the singlets in the Sp(2) case is the trace part
of Q∧Q.

The final column uses the decomposition of spinors according to SO(1,9)→
SO(1,1)×SO(8), where e.g.

16s → (+,8s)⊕ (−,8c) . (3.1.21)

Given 16s , N+ (N−) counts the holonomy singlets in 8s (8c).

Beyond geometry : SCAs and space-time SUSY
In summary, geometries with a reduced holonomy are thus observed to

yield space-time supersymmetric supergravity theories. Trying to generalise
to non-geometric CFT backgrounds, one is led to the question:
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“Which properties are the abstract CFT counterparts of reduced
holonomy in the geometric phase?”

Put differently, we wish to complete the following diagram:

GEOMETRIC PHASE
Reduced holonomy

Parallel spinors

NON-GEOMETRIC PHASE
????
????

(EXTENDED) SUPERGRAVITY
R-symmetry

As it turns out, R-symmetry in the space-time SUSY algebra contains the clue.
The argument is short and parallels the reasoning in [30]. Consider the NS-R
sector in a type II compactification, and neglect the R-NS sector for a while.
The gravitino states are created by the vertex operator

Vgravitino = VL ⊗ VR = e−φψμ WL ⊗ e−φ/2Σα WR. (3.1.22)

where μ (α) labels components of the vector (spinor) of the non-compact
space-time part, andWL,R are internal CFT completions. Further,ψμ and Σ are
the worldsheet fermion and spinfield, respectively, and φ is de bosonised su-
perghost. At zero-momentum, the ground states created by the anti-chiral Ra-
mond vertex in Eq. (3.1.22) are in one-to-one correspondence with the space-
time supercharges Qα; they close into a super-Poincaré algebra, encoded in
their OPE:

{Qα,R,Qβ,R} =
∮
w̄
dz̄ e−φ/2Σα WR(z̄) e−φ/2Σβ W ′

R(w̄) . (3.1.23)

When applied to a state created by a vertex ΦpL,pR where pL,R label momentum
and winding, the rhs. evaluates (up to a constant tensor factor, see below) to

/pR; as already announced, this is the super-Poincaré algebra.
In geometric compactifications on a d-dimensional manifold, say, the (‘chi-

ral’) R-symmetry for the supercharges in the non-compact space-time SUSY
algebra coincides with the commutant3 of the holonomy group inside SO(d):
recall that supersymmetries correspond to covariantly constant spinors and
therefore, holonomy singlets. The reduction of the d-dimensional spinor ac-
cording to SO(d)→ Hol0×U will contain (1, r), where r is a U irrep. As such,

3I should warn the reader that this is an improper use of the terminology. Here, the ”com-
mutant of H inside G” (for a given embedding) is the maximal subgroup K of G, such that
G ⊇ H × K.
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U is identified as the R-symmetry. Clearly, U is intimately tied to the internal
geometry.

Similarly, in Eq. (3.1.23), the internal CFT vertex operators WR,W ′
R should

represent the R-symmetry. This implies in particular that its generators cor-
respond to worldsheet currents j(z)A, closing under OPE into an affine alge-
bra A. A worldsheet symmetry algebra containing an N = 1 SCA together
with this A is necessarily an N-extended SCA. The proper identification is
quickly made going through the classification of the latter: if A=U(1), SU(2)
then the N-extended algebra has to be N = 2,4 respectively. This completes
the argument for the chiral R-symmetry groups. For low-dimensional irre-
ducible compactifications, we give a list in Table 3.3, which may be compared
to Table 3.2; the cases with reducible holonomy follow from this upon dimen-
sional reduction.

The story for the R-NS gravitino that was hitherto left out, completely
parallels the one above: the associated supercharges close into an algebra
likewise, and they come with an anti-chiral R-symmetry. Moreover, on per-
turbative closed string states, the OPE dictates that {Qα,L,Qβ,R} = 0, since
left-movers and right-movers decouple. The upshot is that only R = UL × UR
is manifest in the OPEs. However, when worldsheet boundaries, or equiva-
lently, D-branes, are present, the left-right decoupling no longer holds. First
of all, this has the effect that central charges show up in the {Qα,L,Qβ,R}
anti-commutator. More importantly for the point we wish to make, the man-
ifest R-symmetry gets enhanced. The resulting algebra must match one of
the space-time super-Poincaré algebras in the well-known list. For example,
d = 4, (N = 1, N = 1) withR-symmetries (U(1),U(1)) yields N = 2 with U(1)×
SU(2).

d Space-time SUSY R Holonomy Worldsheet SUSY

d = 6 N = 1 SU(2) SU(2) N = 4
d = 4 N = 1 U(1) SU(3) N = 2
d = 3 N = 1 −∗ G2 N = 1
d = 2 N = (1,0) −∗ Spin(7) N = 1

N = (2,0) U(1) SU(4) N = 2
N = (3,0) SU(2) Sp(2) N = 4

Table 3.3: Low-dimensional space-time vs. worldsheet SUSY.

In Table 3.3, the entries with −∗ actually fall outside this argument, since
the commutant of the holonomy fails to be a group. As argued in Ref. [31], a
modified notion of commutant leads at best to a coset rather than a group. A
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related reasoning shows that particular extensions of the N = 1 SCA lying in
betweenN = 1 andN = 2 actually correspond to those cases, thus completing
the list.

In summary, in the present paragraph we have established a link between
the specific extension of the N = 1 SCA and the holonomy of the geometric
compactification. In combination with the previous paragraph, the results are
summarised in the following scheme:

GEOMETRY
Irreducible holonomy with commutant algebra A

and n covariantly constant spinors
�

CFT
Extended SCA containing an affine algebra A

with n spectral flows

From CFT back to geometry (I)

Thus far, the CFT-geometry correspondence has been considered in a fairly
abstract setting: no reference was made to concrete models. That is to say,
the correspondence took place at the level of SCAs and spectral flows.

If the CFT is more concretely taken to be a non-linear sigma-model, how-
ever, a more refined picture of the correspondence emerges. It includes the
following ingredients:

Fact 3.1

R-R ground states in the CFT are in one-to-one correspondence with
cohomology classes of the manifold.

Fact 3.2

A subset of the marginal deformations of the CFT is mapped to defor-
mations of structures on the manifold.

Observe that Facts 3.1 and 3.2 are related by spectral flow [32]. Since spectral
flow operators are space-time supersymmetry generators, morally speaking,
this implies that states in 3.1 and 3.2 sit in the same multiplet of the unbroken
SUSY. By itself, this is a first manifestation of the close connection between
worldsheet and space-time features.
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Further, the geometric deformations in Fact 3.2 involve metric perturba-
tions; together with the perturbations of the B-field background, they fill out
the NS-NS truly marginals in the CFT, while 3.1 corresponds to R-R back-
ground deformations. Therefore, space-time SUSY relates metric moduli and
cohomology.

A detailed picture of point (a) is obtained if the N = 2 structure4 on the
worldsheet is judiciously exploited: Fact 3.1 can be established via topological
twisting of the worldsheet theory. However elegant, we shall refrain from a
detailed analysis here. The interested reader is referred to, e.g., Ref. [33].

With less sophistication, the same conclusion is reached via simple Kaluza-
Klein reduction of the supergravity and the non-linear sigma model, both on a
smooth target M, say. The basic observation is that R-R p-form fields yield a
massless (p−q−r )-form for each ∂̄-harmonic (q, r)-formω on M. Dolbeault
cohomology classes are in one-to-one correspondence with such forms5.

The present section’s discussion presumed a smooth target M through-
out. However, the correspondence will shortly be argued to persist in singular
orbifold limits (see p. 67).

D. Orbifolds and desingularisation

Since a large part of the present volume is going to deal with so-called orbifold
spaces, orbifolds for brevity, some generic features of the classical geometry
are collected here. The selected topics should give the reader a sufficiently
detailed overview to see the links with CFT and D-branes (to be explored in
Section 3.2 and Section 3.3).

An orbifold (M, g) is a singular manifold M/G of real dimension n whose
singularities are locally isomorphic to quotient singularities Rn/G, where G
is some finite subgroup of GL(n,R); each non-identity element of G fixes a
subspace of at least real codimension 2 in Rn. In a similar vein, a complex
orbifold is a singular complex manifold of dimension m whose singularities
are locally isomorphic to quotient singularities Cm/G, for finite subgroups
G ⊂ GL(m,C).

The condition on the codimension of the fixed-point set is technical (it
makes orbifolds behave very similarly to manifolds) and will not bother us
anyway.

The orbifold M/G is obtained by identifying G-orbits of points on M , the
singular set is characterised to consist of points xG ∈ M/G that have a non-

4The target is assumed to be Kähler at least. The the G2 and Spin(7) cases require only
minor modifications, see [31].

5See also p. 36.
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trivial stabiliser group.
Let a discrete subgroup G ⊂ GL(n,R) be such that it is embedded in one

of the special holonomy representations of Table 3.2. It is clear that the
holonomy is discrete, accordingly. However, in the desingularisation pro-
cess, this initial discrete holonomy will gradually become ”enhanced”: in the
completely desingularised situation, some continuous subgroup of GL(n,R)
will be filled out. Of special interest are resolutions that preserve the origi-
nal structure, e.g. desingularisations taking initial SU(3) discrete holonomy
into SU(3) continuous holonomy. In fortunate cases (including all n ≤ 6
cases) such structure-preserving desingularisations are known to exist. Un-
fortunately, this does not seem to be the general pattern. For example, some
Calabi-Yau fourfold orbifolds have been demonstrated not to have a crepant
blow-up, that is, a resolution that does not affect the Calabi-Yau property.
Complete control over higher-dimensional singularities and their structure-
preserving resolutions remains an open problem.

Basically, known ways to get rid of orbifold singularities fall into two
classes: blow-up and deformation (resolution). We collect general features
of both procedures below, leaving detailed examples to Section 3.1.2 (SU(2)
holonomy) and Section 3.2.3 (SU(3) case).

Blow-up
Blowing up along subvarieties of a given variety X is a common technique

in complex algebraic geometry. A priori, it is unrelated to singularities (one
may well blow up non-singular points) but rather trades ’new’ varieties for
’old’ ones. More to the point, the newly obtained varieties are closely related
to the original one, it is so-called birational to the latter. Loosely speaking, a
birational map is an isomorphism almost everywhere.

In essence, to blow up a non-singular point p : (x = 0) in X := CN is the
replacement of p by a PN−1, as follows from the definition of X̃:

X̃ = {((x); [y]) ∈ CN × PN−1| x ∧y = 0} . (3.1.24)

Coordinates (x) are affine, whereas [y] are projective; further, x ∧ y :=
x[iyj]. It is elementary to see that there is a bijective correspondence π :
X̃ → X away from the origin of X, while π−1 maps the origin to the entire
PN−1. The latter is referred to as the exceptional divisor EX (codimension one
subvariety) of the blow-up.

Next, consider a subvariety Y embedded as an algebraic subset in X, i.e., Y
is locally determined by a set of polynomial constraints. The blow-up X̃ → X
induces Ỹ → Y with an exceptional set EY := Ỹ ∩ EX . Judiciously chosen
blow-ups of X will partially smooth out initially singular points of Y . Then,
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if EY still contains singularities, successive blow-ups are required to remove
all of them. In fact, it is an established fact that by blow-up, all orbifold
singularities can actually be removed (Hironaka’s theorem).

A number of comments are appropriate here:

(a) In blowing up, one is not guaranteed to preserve all properties enjoyed
by the original singular variety. Typically, one is interested in blow-ups
that are crepant, i.e. such that KỸ = π∗KY , where K’s are the associated
canonical bundles. In particular, if Y is Calabi-Yau (i.e. KY is trivial) it
means that the defining property is not destroyed in the blow-up to Ỹ .
For one thing, Hironaka’s theorem does not guarantee that there exists
a crepant blow-up undoing the singularity. Similar reasonings apply to
the preservation of additional structures (see, e.g., Section 3.1.2 for a
discussion of the hyperkähler case).

(b) The blown-up completely non-singular Ỹ is not unique. Firstly, one can
go on indefinitely blowing up non-singular points. In fact, the blow-up
of the origin in CN above demonstrates this explicitly. However, since
such a procedure necessarily destroys crepancy in the end, one usually
restricts to ’minimal’ resolutions, containing no spurious exceptional
(−1)-divisors6. Blow-ups of non-singular points give rise to such creeps.
The surface singularities in Section 3.1.2 will have crepant blow-ups that
contain only (−2)-curves. Secondly, it is well-known that in dimension
three and higher, crepancy does not even suffice to single out unique
resolutions: typically, there are a number of them related by flop-trans-
itions (see, e.g., Ref. [34]).

(c) Being defined by holomorphic algebraic equations, the exceptional di-
visors are actually complex submanifolds of Ỹ . As such their volumes
are measured by the appropriate wedge power of the Kähler form, as
follows from Wirtinger’s theorem on p. 37. In more precise terms, one
should think of the new Kähler class to be related to the original one as
ω̃Y = ωY +ωE . The second summand is a two-form that governs the
size of the exceptional set; in particular,

∫
C ωE is the size of a two-cycle

C that is dual to the exceptional divisor EY ∈ H2d−1(Ỹ ). As such, the
physical picture of blowing up and down had better be thought of as
curves expanding or shrinking.

(d) Since complex submanifolds are added in the process, a blow-up is said
to add to ⊕pHp,p. In fancy terminology, blow-up takes place in the
holomorphic category.

6More generally, (−n)-divisors arise as sections of a line-bundle L with c1(L) = −n.
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Deformation
Deformation or resolution is an alternative way of removing singularities.

With quasi-projective varieties, i.e., those embedded by polynomial constraints
in projective spaces or toric varieties there are two potential sources of sin-
gularities.

(a) The ambient space may already display singular points. A subvariety
crossing those will typically inherit some of those. As a typical exam-
ple, weighted projective spaces (and general toric varieties) are prone to
having orbifold singularities (see e.g., Ref. [35]).

(b) The subvariety can acquire additional singularities through the embed-
ding polynomial constraints F . Singular points p of this type are char-
acterised by {

F(p) = 0
dF(p) = 0 .

Deformation removes the singularities by adding monomials (of appropriate
homogeneity type, in the projective case) to the defining F so as to end up
with an empty zero-set to the system of equations Eq. (3.1.25).

A variety defined as the zero-set of holomorphic polynomial constraints
naturally inherits the complex structure from the ambient space. Intuitively,
it seems reasonable to assume that deformed polynomials give rise to de-
formed induced complex structures. From this one would be tempted to set
up a map (

polynomial
deformations

)
↔

(
complex structure

deformations

)
(3.1.25)

However, some care is required, since polynomial deformations can be inef-
fective on the one hand, and deficient on the other hand (see e.g. Ref. [36]). For
example, reparametrisations of the ambient space are observed to kill some
of the potential complex-structure deformations.

Up to these trivial removals, the map in Eq. (3.1.25) can be shown to be
1 : 1 in the hypersurface case. In fact, the Griffiths residue map may then
be used to establish a correspondence between monomials and added middle
cohomology classes [37].

3.1.2 ADE orbifolds I : a case study

Throughout, ADE orbifolds will be the main source of illustrations, to come to
grips with the presented material. Here and below, orbifolds with the epithet
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‘ADE’ are shorthand for C2/G, where G ⊂ SU(2); such discrete G are known
to fall into an A−D − E-classification. Apart from simplicity considerations,
which allow an explicit demonstration of most operations involved, there is
a second motivation for the study of such orbifolds: the associated type of
singularities also figure in higher-dimensional orbifolds, where they are no
longer isolated. Simplicity has its price, however: ADE orbifolds may fail to
be generic enough, and display an atypical behaviour in certain respects. For
the present section, this will not become relevant.

The singular A2 case

The A2 singularity is described by the following polynomial equation in C3:

P(x1, x2, x3) ≡ x2
1 + x2

2 − x3
3 = 0 . (3.1.26)

This describes a hypersurface with a singularity in the origin : the singular
character is signalled by P = dP = 0 at that point. A change of coordi-
nates, such that x2

1 + x2
2 = uv, makes G manifest: to this end, consider the

parametrisation:
(t1, t2)→ (u,v,x3) = (t31 , t32 , t1t2) . (3.1.27)

The full set (t1, t2) ∈ C2 manifestly obeys Eq. 3.1.26, and moreover, enjoys
a Z3 invariance, (t1, t2) → (e2π i/3 t1, e2π i/3 t2). Thus, (t1, t2) = (0,0) is the
only point that is fixed by this action. All in all, the singularity described by
Eq. (3.1.26) is recognised to be locally modelled by C2/Z3.

Blowing up

This is probably the next-to-easiest example of a surface singularity to blow
up. Consider the space

{((x1, x2, x3); [y1, y2, y3]) ∈ C3 × P2|∀i, j, x[iyj] = 0} , (3.1.28)

which is the affine three-plane C3 with the origin blown-up. This total space
may be viewed in two ways:

(a) Either as C3 with the origin replaced by P2,

(b) or as the total space of the line-bundle OP2(−1). In fact, this is the line-
bundle over P2 dual to the hyperplane bundle: sections of the latter
are the homogeneous functions of degree 1 on P2. Alternatively, the
projectivisation x ∧ y = 0 of associates an affine line Lp, determined
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orbifold singularity

Figure 3.1: Blow-up of an A2-singular point. The irreducible exceptional com-
ponents are two projective lines P1 intersecting in a point.

by the constraints, to each point p outside the origin of C3. As such,
OP2(−1) constitutes the space of affine lines in C3 (see also Appendix
A).

Let us next see how this blow-up in the ambient space affects the hypersurface
singularity.

The blow-up (A3)i
σ
�→ C3 involves three patches, e.g., for (A3)1,

(x1, y1, z1)
σ
� (x1, x1y1, x1z1) , (3.1.29)

and likewise for the other two. Clearly, in (A3)1, the exceptional set in the
ambient space blow-up, σ−1(0), is the affine two-plane (A2)1 : (x1 = 0). In
this patch, the blow-up X(1) of (P(x,y, z) = 0) is therefore given by

P(x1, x1y1, x1z1) = (x1)2(1+y2
1 + x1z3

1) = 0 . (3.1.30)

The first factor is an artefact, whereas the second is the so-called proper trans-
form, or blow-up, of X. Observe that the surface has become non-singular, and
the exceptional set is a set of two disjoint lines (y1 = ±i) in (A2)1. Similarly,
in the second patch, the blow-up is given by local equations

(1+ x2
2 +y2z3

2) = 0 , (3.1.31)

with an exceptional set consisting of two lines, (x2 = ±i), in (A2)2. Finally, in
the third patch, one has

(x2
3 +y2

3 + z3) = 0 , (3.1.32)
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Figure 3.2: Blow-up of a D2-singular point. An exceptional P1 with three A1-
singular points results after the first step; further blow-ups yields three more
lines.

with two exceptional lines (x3± iy3 = 0), that intersect in the origin of (A2)3.
The exceptional set produced in the blow-up of C3 was ∪i(A2)i = P2.

Since P2 is compact, the affine non-compact exceptional lines above are in fact
glued together to form two P1s (projective lines), intersecting in one point.

Since the local equations used in the process have been holomorphic through-
out, the exceptional P1 divisors are complex submanifolds of X̃.

Even though the above steps display the exceptional set and its proper-
ties explicitly, it must have crossed your mind that this explicit procedure
becomes hopelessly tedious in more complicated cases. In fact, only very re-
cently7 was the procedure carried out for three-dimensional generalisations
of the ADE-singularities [38]. Luckily, more powerful tools are often available,
such as toric geometry for abelian orbifold singularities (see Section 3.2.3).

Deformation

Polynomial deformations of Eq. (3.1.26) provide a second method of desin-
gularisation. The vanishing cycles are easily visualised from the steps below:
the initial polynomial constraint defining the singular surface, is deformed
into

uv = Q3(x3) , (3.1.33)

meaning that the r.h.s. gets replaced by a generic Q3(x3) of degree 3. Non-
singularity holds whenever all roots ei of Q3 are distinct, as is most easily
verified.

The deformed equation Eq. (3.1.33) eliminates v, and the surface is hence
parametrised by (u,x3); u parametrises an algebraic torus C× over the x3-
plane. At the roots ei of Q3, this is seen to degenerate.

7That is, to my best knowledge.
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Two-cycles come in two types, now. First, there are cycles parametrised
by (t, θ)

u = eiθ f (t) , θ ∈ [0,2π] ;

x3 = eit + (1− t)ej , t ∈ [0,1] , (3.1.34)

for an arbitrary real function f vanishing at t = 0,1 and nowhere in (0,1).
Denote the corresponding cycle as Cfij . These are obviously cycles, i.e., ∂Cfij =
0; moreover, their homology class is non-trivial since u takes values in C×:
therefore, there doesn’t exist any finite set of three-balls {Ba}a such that

Cfij = ∂
(∑
a
Ba

)
. (3.1.35)

Clearly, the homology class [Cfij] ∈ H2(X) has a spherical representative, i.e.,
cycles of this type are two-spheres, topologically speaking.

x

u

3

Figure 3.3: Cycles arising from deformation. On the left the spherical cycles
of Eq. (3.1.34), on the right, toroidal ones. Marks in the x3-plane are zeroes
of QN .

Besides these, there exist toroidal cycles

u = eiθ f (t) , θ ∈ [0,2π] ; (3.1.36)

x3 = g(t), t ∈ [0,1] , (3.1.37)
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for some complex function g such that g(0) = g(1) not taking values in
the root set of Q; further, for the cycle not to be trivial, g must enclose at
least one root of Q3. Cycles of this type can in fact be demonstrated to be
homologous to linear combinations of the spherical ones above.

The picture drawn makes the following points intuitively clear:

(a) Homology classes [Cij], [Cjk] where k �= i have topological intersection
number ±1, depending on relative orientations.

(b) Upon deformation back to the original orbifold set-up, i.e. when all
roots of Q become coincident whereby the Z3 symmetry is restored, the
spherical cycles manifestly vanish.

(c) These vanishing cycles are moreover linearly dependent: their homology
classes are generated by two independent ones.

More generally, (deformations of) AN−1-singularities are treated similarly:
there, the initial xN3 is replaced by a degree-N polynomialQN(x3). Since there
are then N − 1 monomials xi3 of order strictly less than N − 1, the complex
structure moduli space will be N−1 complex dimensional 8: a natural local co-
ordinate system is given by the complex coefficients in the deformed Q(x3).
Furthermore, the counting is seen to be in 1-1 correspondence with the num-
ber of vanishing cycles. This is in accord with the general hypersurface result,
p. 48.

ALE metrics

Let us quickly collect some properties of Asymptotically Locally Euclidean
(ALE) metrics on four-dimensional manifolds. Asymptotically, such spaces
look like C2/G, with G a discrete subgroup of SU(2). More is true, in fact:
these smooth spaces are diffeomorphic to resolutions of the corresponding
C2/G.

In Ref. [39] ALE manifolds MG have been shown to result from a hy-
perkähler quotient construction. Being hyperkähler spaces by construction,
the MG come equipped with 3 covariantly constant symplectic forms ωa.
Moreover, their holonomy sits inside SU(2).

Further, the MG develop singularities whenever
∫
C ωα = 0,∀α. That is,

whenever the volume of C ∈ H2(MG) vanishes wrt. any of the Kähler forms.
In this picture, C2/G results in the limit where all of H2(MG) obeys the stated
condition.

8The order N − 1 monomial does not represent a true deformation: adding it to QN corre-
sponds to picking an origin in the x3-plane.
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Compactification

Only non-compact orbifolds have been the issue in the above: the local mod-
els CN/G represented the full space under study. Here are three ways how
such local models show up when dealing with spaces that are compact:

(a) Weighted projective spaces and their generalisations, toric varieties, are
quite apt to developing orbifold singularities. These spaces may serve
as ambient spaces for defining Calabi-Yau manifolds as complete inter-
sections. As such, the latter can inherit local orbifold singularities from
the ambient space, which makes a thorough understanding of the local
models worthwile. Further, it is a well-known fact that the embedding
itself is a potential source of additional orbifold singularities [35].

(b) In the case N = 2, to add points at infinity yields an orbifold of the
compact P2 space. There are now two singularities, each of which is
sitting at a pole. In fact, the resolution of the space can be shown to
yield a K3 surface (see e.g., Refs. [40, 41]).

(c) A compact higher-dimensional complex torus can be modded out by
discrete rotations. Alternatively, this space results from dividing CN

by the combined action of discrete translations (encoded in a discrete
lattice Λ) and discrete rotations (G). For the procedure to make sense,
Λ must be invariant under the action of G. Since the main purpose is
illustrative, I will be brief and only comment on the N = 2 case below
(see Refs. [42] for a list of N = 3 torus orbifolds, however).

K3 surface from the torus
The only rank four lattices left invariant by discrete subgroups of SU(2) are

collected in Table 3.4.
Let me comment on the entries: [g] stands for the weight lattice of the

Lie-algebra g and ⊕ is the orthogonal sum. With multiplicities in front, the
summands need not be orthogonal wrt. each other. Moreover, the multiplicity
equals the number of independent scale factors multiplying the lattice, yield-
ing an equal amount of independent size parametres in the quotient space.
The second column contains the global rotation orbifold group G, and the
third entry contains the fixed point types that occur, together with their mul-
tiplicities. The data in the third column will be reproduced from string theory
in Section 3.2.2. Suffice it here to add only the observation that the binary di-
hedral groups have not shown up in string theory until quite recently [43].
Independently, these were under study by the author and M. Billó. Actually,
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Λ G Fixed points

4[su(2)] Z2 16 A1

2[su(2)⊕ su(2)] Z4 6 A1, 4 A3

[su(2)⊕ su(2)⊕ su(2)⊕ su(2)] D2 2 D4, 3 A3, 2 A1

[so(8)] D2 4 D4, 3 A1

2[su(3)] Z3 9 A2

Z6 1 A5, 4 A2, 5 A1

[su(3)⊕ su(3)] D3 1 D5, 3 A3, 2 A2, A1

Table 3.4: Four-tori, discrete rotation groups and the associated fixed-point
structure.

the entry with so(8) was discovered precisely from string theory considera-
tions by M. Billó, and appears to be missing from the table in Ref. [43].

Example 3.1 :
It is instructive to see how things work in an explicit example, the D2 case,
say. To that end, take Λ the hypercube lattice, as indicated in Table 3.4. In
local holomorphic coordinates (z1,2), the action of the D2 generators a,b is
left multiplication by iσ3, iσ1, respectively. Moreover, the point group has one
subgroup of order two (〈a2〉), and three of order four (〈a〉, 〈b〉, 〈ab〉). On the
square four-torus 〈a2〉 fixes 16 points (�,�), with � = 0, 1

2 ,
1
2 i, 1

2(1 + i). Of
these, the index-two subgroups fix 4 points each, respectively

〈a〉 : (0,0), (m,m), (0,m), (m,0) ;

〈b〉 : (0,0), (m,m), (
1
2
,
1
2

i), (
1
2

i,
1
2
) ;

〈ab〉 : (0,0), (m,m), (
1
2
,
1
2
), (

1
2

i,
1
2

i) , (3.1.38)

wherem = 1
2(1+i). Finally, both (0,0) and (m,m) are invariant under the full

dihedral group. As to e.g. (1
2 ,

1
2), (

1
2 i, 1

2 i), they get identified under the action
of the full D2; in other words, they arrange themselves into orbits of the large
group. A similar story applies to the remaining fixed points: those fixed under
an index p subgroup combine into length-p orbits. In all, one thus ends up with
2 length-1, 3 length-2 and 2 length-4 orbits. Locally, the regions in the vicinity
of fixed points look like C2/D2, C2/Z4, C2/Z2, respectively. Gluing in smooth
ALE spaces with the right asymptotics, it is thus found that 2 D4, 3 A3 and 2A1

spaces will do. This is the result listed in Table 3.4. Performing a count of the
(−2)-exceptional curves, it is readily seen that 19 of those are produced in the
resolution. Their Poincaré-duals together with the three invariant hyperkähler
forms yield a total of 22, which is precisely suitable for a K3! �
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3.2 A closer look – The closed-string picture

In the present section, orbifolds will be reviewed in a CFT approach. As such,
it will become clear how closed strings effectively manage to deal with the
classically singular geometry: contrary to expectations, perhaps, the orbifold
CFT remains well-behaved. This section concludes with an explanation for
this seemingly striking feature.

In the various possible approaches to orbifold CFTs [44, 42, 45, 46, 47],
the algebraic aspects that will be needed further on are best illustrated in the
treatment of [48]. Hence, this path will be followed closely in Section 3.2.1.

3.2.1 Aspects of the CFT

Consider a well-defined CFT C with symmetry algebra AL × AR . Let fur-
ther a finite group G act chirally on the CFT C, i.e., G does not mix left-
and rightmovers. Under those circumstances G is a symmetry group of the
CFT, provided it commutes with the Virasoro algebras. There exists a canon-
ical procedure, called orbifolding, to build a (possibly) new consistent CFT
C′ = C/G out of the original one. To spend a few lines on the main points in
the construction will prove to be a useful preliminary for the construction of
D-branes in the new theories.

A. Hilbert space structure

First, letAG be the G-invariant part of the chiralA. SinceAG commutes with
G and AG is a submodule of A, every A-module [φ] has a decomposition
into AG ×G-modules:

[φ] =
⊕
α,I
m(e)
α,I [φ

e
α,I]⊗ R(e)I , (3.2.1)

where e is the unit element in G. This extra label, whose meaning will be-
come clear shortly, denotes the so-called untwisted sector. Further, R(e)I are
irreducible G representations: it captures the complete group-theoretic be-
haviour. Besides the modules of Eq. (3.2.1), there exist g-twistedAG-modules,
characterised by the fact that fields obey boundary conditions twisted by g.
Modules of the latter kind will comprise the g-twisted sectors with corre-
sponding Hilbert spaces Hg . Further, the action of elements h ∈ G takes
Hg →Hhgh−1 . Let Cg be the conjugacy class that contains g. It follows then
that ⊕h∈CgHh is taken into itself by the orbifold action, hence carries some
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representation of G. In contrast, individual sectors Hg only furnish repre-
sentations of the normaliser Ng ⊂ G, where

Ng = {h ∈ G|[h, g] = e} . (3.2.2)

Thus, with individual elements labelling boundary conditions, one has a de-
composition

Hg =
⊕
α,I
m(g)
α,I [φ

g
α,I]⊗ R(g)I , (3.2.3)

where I runs over the irrepses of Ng . Alternatively, one can take conjugacy
classes Cg as labels for boundary conditions, where representations of the
full G then organise the twisted sector

H[g] =
⊕
α,I
m(g)
α,I [φ

g
α,I]⊗ RI . (3.2.4)

The number of twisted sectors is thus seen to equal the number of conjugacy
classes in the group. If you adhere to the picture where elements label the
sectors, recall that different such sectors are grouped into orbits so as to
make G invariants, thus making both counts agree. In summary, the structure
of the chiral Hilbert space takes one of the equivalent forms:

H =
⊕
g∈G

Hg ,=
⊕
[g]
H[g] (3.2.5)

where each component can be further decomposed into AG × Ng , AG × G-
modules, respectively. In fact, the Hilbert space structure in Eq. (3.2.5) will
prove to be the crux for modular invariance shortly.

Example 3.2 : SO(2d)1 current algebra
The following is a simple illustration. Let A be the algebra generated by free
fermions

A := 〈 , ∂kψμ〉 (3.2.6)

where k ∈ N and μ = 1, . . . ,2d. Clearly, there is a G = Z2 symmetry, generated
by (−)F , with F the worldsheet fermion number. Now

H[e] = [ ]+ ⊕ [ψμ]− , (3.2.7)

where the subscript in the rhs. denotes the G = Z2 irrep. The modules are
AG = SO(2d) level-1 modules, each containing integrally spaced conformal
weight operators only. Observe that the elementary ψμ obey anti-periodic (NS-
) boundary conditions in both modules of Eq. (3.2.7).
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A twist by g := (−)F effectively turns NS into periodic (Ramond) boundary
conditions. Additionally, the corresponding twisted module has a decomposi-
tion

H[g] = [S]+ ⊕ [C = Γ μS]− , (3.2.8)

containing the spinor and anti-spinor as the highest weight states.
In all, the full chiral Hilbert space decomposes as in Eq. (3.2.5):

H = [ ]+ ⊕ [ψμ]− ⊕ [S]+ ⊕ [C]− . (3.2.9)

To keep only G-invariant states is observed to effect a chiral GSO-projection. �

B. Chiral traces and partition function

Next, we turn to traces in the chiral theory. For notational convenience, here
and below two shorthand notations for chiral blocks (=traces over a full (un-
)twisted sector) will be employed interchangeably:

Zc(h,g) ≡ h
g
≡ TrHg (h q

L0− c
24 ) , (3.2.10)

where the superscript ‘c ’ must remind you that the traces are taken over
the chiral space only. Given the structure of the Fock space, Eq. (3.2.3) and
Eq. (3.2.4), the chiral traces in the [φgα] modules are easy to extract:

χgI = 1
|G|

∑
h∈G,[g,h]=e

ρI(h−1)h
g
, (3.2.11)

where ρI is the character of the associated representation. Observe that the
operator

PI ≡ 1
|G|

∑
h∈G,[g,h]=e

ρI(h−1) h (3.2.12)

precisely projects onto states in RI in the Cg-twisted sector [48].
How about the full, rather than chiral, CFT then? The procedure to con-

struct a one-loop modular invariant proceeds in three canonical steps.

(a) Project the original C theory onto its G-invariant subspace, i.e. keep only
G invariants;

(b) Add twisted sectors;

(c) Project the twisted sectors onto their G-invariant parts.
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Note that the full Hilbert space, rather than the chiral space, is now the rele-
vant object. Point (a) is accomplished by

1
|G|

∑
g∈G

Z(e, g) ; (3.2.13)

where Z(−,−) denotes the trace over the combined chiral × anti-chiral space.
This procedure generically destroys modular invariance (of the initial CFT C).
Steps (b) and (c) are performed next so as to restore it. The complete orbifold
partition function at one-loop therefore thus reads schematically,

∑
g

1
|Ng|

∑
h∈Ng

Z(g,h) . (3.2.14)

In Ref. [48], the chiral blocks were shown to carry a representation of the
modular group where 9

S : g
h

→ σ(g,h) h−1

g
; (3.2.15)

T : g
h

→ τ(g,h)gh
h
, (3.2.16)

with phase factors σ(g,h), τ(g,h). From the structure of the partition func-
tion, modular invariance is formally restored by inspection.

C. Of fusion rules and algebras

The action Eq. (3.2.15) of S on the space of orbifold chiral blocks implies that

Sh,g′g,h′ = σ(g,h) δ
g′
g δh

−1

h′ . (3.2.17)

The base-change Eq. (3.2.11) trading orbifold chiral blocks Zc(g,h) for one-
loop characters χgI turns S into

SαβIJ =
∑
h∈Ng

ρI(h)ρJ(h−1)σ(α,h)δα,β . (3.2.18)

It is this matrix, rather than Eq. (3.2.17), that will produce the orbifold fusion
rules from Verlinde’s formula, Eq. (2.2.11).

9Strictly speaking, less is true. The literal statement in Ref. [48] was that the modular gen-
erators acted on the chiral Zc(g, h) as given with additional g,h dependent phases. Assuming
a left-right symmetric Hilbert space and action, the phases cancel from Z(g,h), which is the
content of Eq. (3.2.14).
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Let us first think about three-index objects that could be meaningful in the
present context. Therefore, consider the following subset of Cα ×Cβ ×Cγ :

Sαβγ = {
(g1, g2, g1g2)

} = nαβγ⊔
μ=1

Oμ , (3.2.19)

where the second equality is the stratification into nαβγ G-orbits Oμ . From
these numbers, the linear space of conjugacy classes may be turned into a
commutative, associative algebra: the class algebra, where multiplication is
defined as:

Cα � Cβ ≡ nαβγ Cγ . (3.2.20)

Since fusion rules for φαI are what we are after, the representation theory
of G must still be taken care of properly. For a given triplet (g1, g2, g1g2) ∈
Oμ , denote the normaliser Nμ ≡ Ng1 ∩ Ng2 . Let furthermore n(μ)IJK be the
multiplicity of the trivial representation in the tensor product RI ⊗RJ ⊗RK of
representations of Nμ. Then, from the numbers

NαβγIJK ≡
nαβγ∑
μ=1

n(μ)IJK (3.2.21)

the orbifold fusion algebra is defined as in Eq. (2.2.5).
For rational CFTs, the numbers in Eq. (3.2.21) have been demonstrated in

Ref. [48] to follow from Eq. (3.2.18) upon application of Verlinde’s formula
Eq. (2.2.11), that is,

NαβγIJK =
∑
α
SαI
SαJ
Sα0
(S−1)αJ (3.2.22)

It is an illustration of the intruiging CFT property that ”S diagonalises the
fusion rules”.

3.2.2 ADE orbifolds II

Let us pause here, and illustrate how the general orbifold formalism of the
previous section applies in the concrete case of geometric flat space orbifolds.
Rather than to pursue generality, it is believed that to demonstrate pro’s and
con’s in particular examples is more instructive. Therefore, whenever appro-
priate, we shall feel free below to restrict the discussion to particular subsets
of the zoo of all possible orbifolds.

The general setting will always be as follows: take four free N = 1 complex
superfields Zi = Zi + θψ that are the superstring extensions of holomorphic
coordinates on C4. These fields make up the c = 12 superstring matter CFT
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in the light-cone. In complex orbifolds, the Zi (Z̄ı̄) carry a representation
Q (Q∗) of the orbifold group G that is embedded in the 4 (4̄) of SU(4). In
fact, if G is abelian, Q is specified by four irrepses of G: Q = ⊕i RIi ↩ 4.

Example 1

Consider the embeddings of abelian subgroups ZN ⊂ SU(2) ⊂ SU(4). In that
case, Q can be chosen as Q = 2R0 ⊕ R1 ⊕ R∗1 , where R0 and R1 are the trivial
and defining representations, respectively. As such, the original chiral SO(8)1
affine algebra splits into SO(4)1× SO(4)′1, and accordingly, one has

O8 → O4O′4 + V4V ′4 ; (3.2.23)

V8 → V4O′4 +O4V ′4 ; (3.2.24)

S8 → S4S′4 + C4C′4 ; (3.2.25)

C8 → S4C′4 + V4S′4 . (3.2.26)

The SO(4)′1 currents can be conveniently rewritten so as to make the under-
lying SU(2)1×SU(2)1 structure manifest:

〈J34̄, J 3̄4, J33̄ − J44̄〉 × 〈J34, J 3̄4̄, J33̄ + J44̄〉 , (3.2.27)

where, e.g., J34 := iψ3ψ4, etc. Orbifold projection removes two currents, and
the invariant algebra we are left with thus becomes

AG = SO(4)1 × U(1)× SU(2)1 . (3.2.28)

Under this reduction, it is observed that

V ′4 = [ψ3,ψ4, ψ̄3̄, ψ̄4̄]→ [ψ3, ψ̄4̄]⊕ [ψ̄3̄,ψ4]⊕ . . . . (3.2.29)

At the ground state level, this is simply the group-theoretical 4 → 2+ 2̄. Fur-
ther, for N �= 2, the ellipsis is non-empty and stands for modules with higher
conformal weight primary states. The argument is short and simple: assign-
ing a ZN charge +1 (−1) to ψ3 (ψ4), the non-invariant currents have charges
±2. As such, when the positively-charged current acts on ψ3 it generates a
descendant state in the initial V ′4, that ceases to be so in the reduction: the
charge of the new state is +3 and therefore it is the lowest state in a distinct
U(1)×SU(2)-module. Observe that its conformal weight is one unit higher
than that of ψ3.

Clearly, a similar analysis applies to O′4, with the result

O′4 = [ ]→ [ ]⊕ [ψ3ψ̄4̄]⊕ [ψ̄3̄ψ4]⊕ . . . . (3.2.30)
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In all, the reduction of V8 into AG ×G-modules therefore reads

V8 → O4 ×
{
[ψ3, ψ̄4̄]× R1 ⊕ [ψ̄3̄,ψ4]× R−1 ⊕ . . .

}
⊕

V4 ×
{
[ ]× R0 ⊕ [ψ3ψ̄4̄]× R2 ⊕ [ψ̄3̄ψ4]× R−2 ⊕ . . .

}
This expression makes painfully clear that the explicit AG-module structure
is quite intricate. Moreover, the results derived here are seen only to hold for
AN−1 orbifolds. These drawbacks are hardly compensated by the manifest
exposure of the AG ×G structure. Therefore, we shall not pursue an analysis
along similar lines of the R-sector and the twisted modules.

Rather, a formalism will be presented below where only the SO(2)41 initial
structure is presumed. At the price of hiding part of the AG-module struc-
ture, the results derived there will be valid for all complex orbifolds.

Example 2: (Part I : SO(2)1 fermions)

Consider a complex fermion ψ that, when combined with its complex conju-
gate, generates an affine SO(2)1 algebra. Pick a cyclic subgroup G′ ≡ 〈g|gKg =
e〉 inside G, and letψ carry a one-dimensional representation RI of G′; that is,
g ·ψ = exp(2π inI/kI)ψ, with gcd(nI, kI) = 1. Setting νI = nI/kI , one checks
easily that

Trv(g qL0− 1
24 ) = 1

2η
[ϑ3(νI|τ)− ϑ4(νI|τ)] ; (3.2.31)

Tro(g qL0− 1
24 ) = 1

2η
[ϑ3(νI|τ)+ ϑ4(νI|τ)] ; (3.2.32)

Tr s(g qL0− 1
24 ) = 1

2η
[ϑ2(νI|τ)− iϑ1(νI|τ)] ; (3.2.33)

Tr c(g qL0− 1
24 ) = 1

2η
[ϑ2(νI|τ)+ iϑ1(νI|τ)] ; (3.2.34)

in the untwisted sector of the chiral theory. Their anti-chiral counterparts are
obtained by replacing τ → τ̄.

As to the gr -twisted sector, it is explained in Appendix B that the corre-
sponding chiral blocks follow from replacing νI → νI+τnI/rkI in Eq. (3.2.31)-
Eq. (3.2.34).

What does this teach us? First, the SO(2)1×G′ decomposition of the initial
modules is

H = ⊕j [j]× RjI ; (3.2.35)
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and e.g. in the untwisted NS+ (v) sector the trace decomposes accordingly
(for kI ∈ 2Z) Trv(qL0− 1

24 ) =∑
j χ

j
v(q), where

χjv(q) = q2j2

η(q)

∞∑
m=0

q2m2kI2(q4jmkI + q−4jmkI ) ; (3.2.36)

= Θ2kI(2j),4k2
I
(q,0,0) . (3.2.37)

This follows at once from the series representations of the ϑ-functions. In
fact, as shown in Appendix B, a closed form is known for each o,v, s, c and
g-twisted sector: in all cases, there is a decomposition into level k2

I theta-
functions.

Example 3: (Part II : SO(2)1 bosons)

Now move on to the bosonic partners of ψ, ψ̄. Zero-modes are the only pos-
sible complication beyond a discussion that completely parallels that of the
fermions. First note that closed string zero-modes only occur in the untwisted
sector.

In a noncompact orbifold C/G the insertion of an order kI element in the
partition function yields

gm
e

=
∫
d2k〈k|gm|q|α′p2|k〉 × gm

e
′

;

= (
det(1− gm))−1

∫
d2kδ2(k) |q|α′k2 × gm

e
′

;

=
∣∣∣∣∣ η(q)
ϑ1(νkI )

∣∣∣∣∣
2

, (3.2.38)

where the ′ denotes the trace over non-zero modes.
In a compact orbifold T 2/G, however, the situation changes in two re-

spects: not only can there be non-zero windings, but the momenta k now
take on discrete values only. Therefore, one rather has

gm
e

=
∑
k,w
〈k,w|gmqα

′
2 (p+ w

α′ )q̄
α′
2 (p− w

α′ )|k,w〉 × gm
e
′

;

= 4 sin2πνkI

∣∣∣∣∣ η(q)
ϑ1(νkI )

∣∣∣∣∣
2

(3.2.39)

where the extra factor, as compared to Eq. (3.2.38), is seen to result from the
absence of continuous momentum.
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The present discussion, when combined with the modular properties of
the non-zero-mode piece (see Appendix B), implies a modular S-matrix:

g
e

S→ e
g
, (non− compact) ; (3.2.40)

g
e

S→ (2 sinπνkI ) e g
, (compact) ; (3.2.41)

where the numerical prefactor in Eq. (3.2.39) has been equally distributed over
chiral and anti-chiral parts.

A. From CFT to geometry II

As explained on p. 44, the massless states are the central characters in the
correspondence CFT-geometry. It is instructive to see how this general fact is
realised in the present orbifold setting. Basically, the closed-string partition
function contains the required data; an explicit count entails the following
recipe:

(a) Find out about the multiplicities of fixed sets of a given type. These will
shortly be shown to be governed by modular invariance. Moreover, this
step is empty in the case of non-compact orbifolds (i.e., local orbifolds).

(b) For each fixed point type, determine the number of massless states sep-
arately. Rather than to expand the partition function, it is generically
faster to reason in terms of shifted modings and ground state energies.

(c) As a check, in the superstring case the found states should arrange
themselves naturally into massless multiplets of the unbroken super-
symmetry, at least if some portion is left unbroken.

Example 3.3 :
Let me illustrate Step (a) by the K3 T 4/D2 example. A simpler example was
worked out in [1]. Recall that the binary dihedral group is defined by: D2 =
〈a,b | a4, b4, bab3a〉. It has three order four Zg4 subgroups, generated by
g = a,b, ba, respectively. With a defining Q ↩ 2 such that Q(a) = diag(i,−i)
and Q(b) = iσ1, the four-dimensional hypercube lattice defining T 4 is seen
to be left invariant. Modular invariance under S, Eq. (3.2.41), requires that
sectors twisted by g be added with multiplicitiesmg , where:

g2 = e : mg = (4 sin2 π
2
)2 = 16 ; (3.2.42)

g4 = e : mg = (4 sin2 π
4
)2 = 4 . (3.2.43)
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The modular invariant can be rearranged as follows, therefore:

Z = 1
|D2|

∑
g;h∈Ng

h
g

; (3.2.44)

= Zuntwisted + 2ZD2 + 3ZZ4 + 2ZZ2 . (3.2.45)

The meaning of the last line is as follows: the ZH are the twisted sector partition
functions of noncompact (local) orbifolds with group H , while the integers in
front count the number of D2-orbits of H-type fixed points. �

In fact, the content of the above CFT procedure is a well-known mathematical
property, a.k.a. the Lefschetz fixed point theorem. A version of the latter
asserts that for g ∈ SO(2d), the number of points fixed under g is given by

det( − g) =
n∏
i=1

(4 sinπνg)2 , (3.2.46)

where the r.h.s. applies to the situation at hand. On the CFT side, these were
integers counting multiplicities of twisted sectors in order to establish mod-
ular invariance. As a matter of fact, the requirement that these be integers
actually puts strong restrictions on the possible point groups G that can be
used. As an example, in the four-dimensional case, only Z2,3,4,6,D2,3 are valid,
as already asserted in Section 3.1.2 (see Table 3.4). It is rather remarkable
how one-loop consistency manages to reproduce Lefschetz’ result.

As for Step (b), the analysis has a local nature. Let me go back to the gen-
eral orbifold case and pick coordinates on C4 that are adapted to the analysis
in the, say, g-twisted sector. With Q such that a twist by Q(g) results in mod-
ings of holomorphic (SO(2)1) coordinates shifted by νg , the NS twisted sector
ground state energy is found from Appendix B: E0,g = −1

2 +
∑4
i=1 νg , whereas

it vanishes in the corresponding R sector. Accordingly, massless NS-states
are created by fermions with mode numbers −E0,g. In the ALE G ⊂ SU(2)
case, the number of G-invariant closed string NS-NS states can thus be shown
to be four (see e.g., Ref. [49]) in each twisted sector. This is to be contrasted
with the CY G ⊂ SU(3) case (see Section 3.2.3).

Once it has been found out which twisted sectors can effectively contribute
massless states, and what the nature of such states is, Step (c) is fairly easy.
For type IIA/IIB compactification on an ADE singularity, I list the d = 6 twisted
sector (bosonic) spectrum in Table 3.5. Anticipating a discussion of D-brane
actions in the next section, we also list the dimensionally reduced field con-
tent.

Applying the ideas on p. 44 to our concrete orbifold examples now only re-
mains as a short exercise. First, the orbifold projection in the CFT untwisted
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Type NS-NS R-R SUSY multiplet

IIA (d = 6) 4 scalars 1 vector N = (1,1) VM
IIB (d = 6) 4 scalars 1 scalar N = (2,0) VM

1 SD two-form
IIA (d = 5) 3 scalars 1 scalar N = 2 LHM

3 scalar 1 vector N = 2 VM
IIB (d = 4) 3 scalars 1 scalar N = 2 LHM

2 scalars 1 vector N = 2 VM

Table 3.5: The massless bosonic d = 6 closed-string states, and their organi-
sation into vectormultiplets (VM) and linear hypermultiplets (LHM).

sector parallels projection onto invariant cohomology on C2, by inspection.
The non-trivial part of the connection resides in the CFT twisted sectors.
From Table 3.5 you read off that in 6 dimensions, each RR twisted sector con-
tributes either one massless vector (IIA) or one scalar and a self-dual two-form
(IIB). This is exactly the field content that is obtained upon dimensional reduc-
tion of the 10d threeform (IIA) or the two-form and self-dual four-form (IIB)
on a harmonic two-form. Therefore, the pattern is suggestive of additional
harmonic forms equal in number to the conjugacy classes in G ⊂ SU(2).
On the other hand, blow-up is the geometrical procedure that produces cy-
cles which are precisely Poincaré-dual such harmonic (1,1)-forms. In fact, for
the SU(2) discrete subgroups it is a well-established property that the num-
ber of exceptional cycles in the blow-up matches the number of conjugacy
classes of G. This remarkable coincidence may be seen as a weak version of
a deep mathematical conjecture/statement known as McKay correspondence
(see Chapter 5). We bring the following fact to the reader’s attention, though:
string theory does not require the orbifold to be resolved to be well-defined,
in spite of the correspondence.

Besides the correspondence cohomology - RR ground states, the relation
geometry - CFT is further tightened by a count of moduli. Call n the number
of non-trivial conjugacy classes in G. The geometrical significance of the
twisted sector NS-NS SO(1,5) singlets is straightforward: given the triplet of
Kähler formsωI on the resolved smooth ALE space, it is observed that the NS-
NS scalars can be arranged into (

∫
aωI,

∫
a B), for every cycle (≈ twisted sector)

Ca. This makes the count just right. First, notice that there are additional
fourth components that involve the stringy B field besides the pure metric
data. Second, the latter can be verified to transform as a triplet of SU(2)R
in the dimensionally reduced cases, e.g., from the explicit vertex operators
(alternatively, see e.g. Ref. [49]).
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So here is the preliminary conclusion:

Fact 3.3

(NS-NS) The G orbifold CFTs have a number of truly marginal NS-NS
operators that equals the number of geometric moduli supplemented
with the B-fields.

Fact 3.4

(R-R) The R-R orbifold ground states match the geometric number of
exceptional cycles in a blow-up.

Observe that this exactly reproduces the scheme on p. 44, as anticipated
there.

More is true, actually. Taking the untwisted sectors as well as the twisted
sector contributions properly into account in each of the examples in Ta-
ble 3.4, it is found that type IIB comes with 21 tensor multiplets by inspec-
tion, irrespective of the example. Luckily, this is the right matter content that
ensures absence of a gravitational anomaly in 6-d, a non-trivial conspiracy of
facts, indeed. Likewise, IIA string theory on the very same orbifolds is seen to
yield 80 scalars. They account for the 58 metric deformations, supplemented
with the 22

∫
Ca B, and the dilaton.

B. Stringy effects – Why is the CFT well-defined?

From the geometrical interpretation of the massless scalars in the foregoing,
it is a simple conclusion that closed type II strings contain the necessary in-
gredients to resolve the geometric orbifold singularities. The ‘physical’ mech-
anism consists in giving nonzero vev’s to a subset of the twisted sector triplet
scalars. In the geometric moduli space, this moves one away from the point(s)
corresponding to the singular orbifold, provided no SU(2)R triplet vanishes
identically. However, the CFT remains well-behaved even before turning on
any vev’s! This feature was explained in Ref. [50] to follow from some non-
vanishing B-flux on each of the blow-up cycles. Rather than the vague state-
ment that ‘strings can cope with the singular geometry in view of their spatial
extension’, we now dispose of a physical explanation as to why things work
so well. For example, in type IIA massless U(1) vectors show up in the R-R
twisted sectors. On the other hand, D-branes are the objects that are charged
under the corresponding gauge symmetries. Further, the orbifold limit is
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such that all cycles have vanishing volume as measured by any of the (triplet
of) Kähler forms. As such, a D-brane wrapped around, say, a two-cycle Ca
would couple to the Poincaré dually reduced U(1) vector Aa. The mass of the
wrapped brane goes to zero with the size of the cycle, thus causing symmetry
enhancement U(1) → SU(2). Since these non-perturbative massless states
were not present in the original description, this would explain the descrip-
tion to go singular. However, a non-vanishing B-flux on the two-cycle is seen
to prevent the outlined scenario, since the wrapped-D-brane mass is bounded
from below by a non-zero number proportional to that flux. In a nutshell, this
is the physical picture explaining why the CFT behaves nicely, in spite of the
geometry.

In principle, though, one could imagine wandering in the CFT moduli space
by perturbing the B-field to a vanishing value. Accordingly, symmetry en-
hancement would occur, causing the CFT description to become singular or
useless. As a matter of fact, the moduli subspace hinted at does exist, and
the symmetry enhancement is an important ingredient to set up heterotic-
type IIA duality. I shall refrain from any further comments here, since that
subject is somewhat outside the scope of the presentation (See e.g. Ref. [51],
however). The main point here, is

Fact 3.5

The CFT orbifold point is disjoint from the enhanced symmetry locus
in moduli space.

Apart from the above considerations, there can be further stringy and
quantum effects, such as worldsheet instanton corrections. Let me suffice
here with the fact that effects of the named type are argued to be absent in
the ADE case, due to the high amount of preserved spacetime supersymmetry.
In CY compactifications, on the contrary, those effects in combination with
Mirror Symmetry have played a central rôle in the correct prediction of the
number of rational curves on certain CYs.

3.2.3 Calabi-Yau orbifolds beyond ADE

Not surprisingly, higher-codimension singularities are subtler than the co-
dimension-2 ADE cases dealt with thus far. The present section illustrates
some features that will shed some light on discrete torsion, to be discussed
in greater detail in Chapter 6. So far, the technical machinery seems to be
well-developed for abelian singularities, while the story is far less clear for
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nonabelian cases. Since abelian orbifolds will largely suffice to make my point,
we restrict to those.

A. Shifted fermion number and GSO-projection

In the CFT approach to orbifolds, the fermion number F of twisted ground
states requires some care. Subtle points concerning F are manifestly dis-
played in the bosonised formulation of the fermion sectors: working in the
light-cone formalism, the SO(8) 8v fermions are grouped into four complex
pairs, with an associated boson each:

ψiψ̄ı̄ ≈ i∂φi , i = 1, . . . ,4 . (3.2.47)

With the assumption that these fermions actually figure in an N = 2 SCA,
the fermion number F is recognised as the charge q under the U(1) current
J = i

∑
i ∂φi of that algebra.

The state with the lowest conformal weight in a twisted sector is com-
monly referred to as a twisted ground state. Denote this ground state in a
sector where mode numbers of ψi get shifted by νi as |{νi}〉. In the operator
formalism, the shift is due to an insertion of a twist field

∏
i eiνiφi(0) in the

origin of the complex plane. This insertion has two effects: the correspond-
ing ground state gets charged w.r.t. J and the fermion number of this twisted
vacuum acquires a shift: F → F + q. Evidently, the shift may affect the GSO-
projection, since the latter involves eiπF : the projection flips in sectors with q
odd, while it stays unaltered otherwise. Besides this, the conformal weight of
the ground state is modified to 1

2

∑
i ν2
i . For |{νi}〉 to have the lowest weight

in the given sector, the νi must take values in νi ∈ [−1
2 ,

1
2).

Examples
Here are some examples. In appropriate coordinates, the action on C4

amounts to multiplication by powers of n-th roots of unity e2π iki/n := (kin ).
For abelian threefold orbifolds we adopt the shorthand self-evident notation
1
n(1, k2, k3) for both the group and its generator g. After appropriate integer
shifts, each of the entries is in fact one of the νi in the g-twisted sector.

Example 3.4 : 1
6(1,1,4)

From Table 3.6, the GSO-projection is unaltered in the sectors twisted by g,g−1

only. The corresponding lowest-mass NS–NS states surviving GSO- and orb-
ifold projections are listed in the third column. A computation of the ground-
state energy (see App. B) reveals that each state listed is in fact massless: the
negative ground-state energy of twisted oscillators coincides precisely with the
mode-number of the indicated oscillator. �
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gk qmod 2 Age Lowest NS–NS state

1 0 1 ψ3
− 1

6

˜̄ψ
3
− 1

6
|(1,1,−2)〉

2 1 1 |(2,2,2)〉
3 1 1 |(−3,−3,0)〉
4 1 2 |(−2,−2,−2)〉
5 0 2 ψ̄3

− 1
6
ψ̃3
− 1

6
|(−1,−1,2)〉

Table 3.6: Fermion number shifts q and lowest states for the 1
6(1,1,4) orb-

ifold (the meaning of ’age’ will become clear from p. 75).

gk qmod 2 Age Lowest NS–NS state

1 0 1 ψ3
0

˜̄ψ
3
0|(1,2,−3)〉

2 0 1 ψ2
− 1

6

˜̄ψ
2
− 1

6
|(2,−2,0)〉

3 1 1 ψ̄3
0ψ̃

3
0|(−3,0,−3)〉

4 0 1 ψ1
− 1

6

˜̄ψ
1
− 1

6
|(−2,2,0)〉

5 1 2 |(−1,−2,−3)〉

Table 3.7: Fermion number shifts q and lowest states for the 1
6(1,2,3) orb-

ifold.

Example 3.5 : 1
6(1,2,3)

Here, the GSO-projection changes in g- and g4-twisted sectors, as indicated in
Table 3.7. �

Example 3.6 : 1
7(1,2,4)

In this third example, all twisted sectors keep the original GSO-projection. The
ground-state energies can be computed to be E0,g = 1

2 −
3
7 ,∀g. This is precisely

right to have one massless closed-string state in each sector, see Table 3.8. �

A pattern reveals itself here: the NS-NS sectors twisted by g and g−1 each
yield one massless scalar (modulus). On the other hand, we knew what to
expect: every element in H2(X) of the smooth space should yield one com-
plexified Kähler form J + iB, where the geometric quantity J controls the size
of the divisor, and B is the stringy Kalb-Ramond field. Below, evidence from
toric geometry will be argued to support this observation, even though the
map : (Conjugacy classes) �→ (Moduli) is noncanonical.



3.2 A closer look – The closed-string picture 71

gk qmod 2 Age Lowest NS–NS state

1 0 1 ψ3
− 1

14

˜̄ψ
3
− 1

14
|(1,2,−3)〉

2 0 1 ψ2
− 1

14

˜̄ψ
2
− 1

14
|(2,−3,1)〉

3 0 1 ψ̄1
− 1

14
ψ̃1
− 1

14
|(3,−1,−2)〉

4 0 2 ψ1
− 1

14

˜̄ψ
1
− 1

14
|(−3,1,2)〉

5 0 2 ψ̄2
− 1

14
ψ̃2
− 1

14
|(−2,3,−1)〉

6 0 2 ψ̄3
− 1

14
ψ̃3
− 1

14
|(−1,−2,3)〉

Table 3.8: Fermion number shifts q and lowest states for the 1
7(1,2,4) orb-

ifold.

B. Toric resolution of abelian singularities

As has been mentioned at various occasions, the explicit blow-up procedure
of Section 3.1.1 becomes hopelessly tedious for higher-codimension singular-
ities. In case the orbifold group is abelian, toric geometry comes to the rescue,
though. This subject would easily occupy a book by itself [52, 53], although
shorter accounts are available in, e.g, Refs [54, 55, 24]. Let us suffice here
with a number of how-to-rules, borrowing mainly from Ref. [54]; this should
largely do to make our point, namely, to provide a graphical picture of the
CFT-geometry correspondence for abelian Calabi–Yau singularities.

Toric fans and how to read them
Toric geometry describes a class of spaces known as toric varieties. Of the

various equivalent formulations, we select the one based on fans. Here is
an intuitive sketch of how an n-dimensional complex toric variety is defined.
The starting point is a Euclidean lattice N ≈ Zn; define further NR ≡ N ⊗Z R.
Convex r -cones σ with apex at the origin of NR are specified by r linearly
independent lattice points in N . A fan Σ then consists of a collection of cones,
where faces of cones are also in Σ. The toric variety XΣ associated to Σ arises
as follows: each large (i.e., n−) cone σ corresponds to a coordinate patch Uσ
on XΣ. Further, patches Ui,j are glued together whenever σi,j share a common
face. The precise prescription is encoded in the way σi,j are adjoined, see
Ref. [24].

For low values of n the fan is concisely visualised as, e.g., in Fig. 3.4.
To proceed, how do properties of Σ translate into geometric data of XΣ?

The vertex set {nσi } ‘associated’ to a cone σ is a minimal (finite) set of lattice
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Figure 3.4: A toric fan Σ describing a 3-dimensional variety. Shaded are a
2-cone (dark) and a 3-cone (light).

points generating all lattice points inside σ over the positive integers, i.e.

N ∩ σ =
q∑
i=1

Z+nσi .

With this understanding, the following properties can be established:

(a) Compactness
XΣ is compact iff the fan Σ spans the whole of N .

(b) Non-singularity
XΣ is smooth iff every r -subcone σ with associated vertex set {nσi } is
such that

σ = R+nσ1 + . . .+R+nσr ,

in particular, q = r .

(c) Calabi-Yau property
If XΣ is smooth, then the canonical class KXΣ vanishes iff nσi lie in a
hyperplane of Rn.

(d) Divisors
Real codimension-p subcones correspond to toric complex p-dimen-
sional subvarieties of XΣ. In particular, divisors are represented by 1-
cones (rays).
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Rule (b) deserves some comment: a given set of cones, {σ}, will generically
fail to meet the smoothness criterion. Therefore, new cones are added by so-
called star-subdivision: adding (integral) vertices that subdivide larger cones
σ . However, as will shortly be exemplified, this procedure need not be unique,
causing the existence of different resolutions. In the threefold case, these are
birationally related through flop-transitions, though.

We end this summary with an observation that was put forward in Ref. [56]:
if crepant resolutions exist, the so-called G-Hilbert scheme appears to have
a preferred status10 from the viewpoint of algebraic geometry. Ref. [56] ex-
plains how to construct the relevant fan. It is not obvious whether and if so,
why G-Hilb is to be singled out by string theory.

Examples
In Ref. [54] it was shown that the toric fan describing a 1

n(1, a, b) orbifold
is specified by the three-simplex with vertices

(n,−a,−b), (0,1,0), (0,0,1) (3.2.48)

and (0,0,0). The three points in Eq. (3.2.48) specify a hyperplane, thus en-
suring the CY-property (c). To facilitate the drawing, in Fig. 3.5 only the face
lying inside this plane is displayed.

Figure 3.5: Toric fans for the singularities in the examples. Vertices are the
intersections of the hyperplane with N . According to Rule (d) above, they
represent exceptional divisors produced in the blow-up.

Blow-ups of these singularities are produced in a straightforward manner,
by so-called star-subdivision. This two-step program proceeds as follows:

10Imprecisely stated, Hilbert schemes of p points on a variety X are generalisations of SpX,
the symmetric p-product of X. The G-Hilbert scheme of |G| points parametrises G-invariant
configurations of |G| points, thereby keeping track not only of positions, but also of ’direc-
tions’ (see e.g. Ref. [57] for a more detailed account); the latter feature is responsible for the
smoothness of the Hilbert scheme.
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first, integral vertices besides those defining the original fan are added. Ac-
cording to rule (d), they represent (exceptional) divisors of the blow-up. Next,
one-by-one each of the new vertices is connected by lines to all of its neigh-
bours that can be reached; that is, no lines must cross during this stage. Two
possible outcomes in the middle example of Fig. 3.5 are visualised in Fig. 3.6:
the original big triangle is subdivided into smaller ones. At the level of cones,
the figures specify particular subdivisions of the original n-cone into smaller
n-cones. Therefore, the second step specifies the nature of the divisors: the
added lines dictate how the new patches (subcones) are to be glued together
in the resolved space. Note that the final result will generically depend on the
order in which the second step is performed. For example, in the 1

6(1,1,4)
and 1

7(1,2,4) examples the resolution is unique, while different resolutions

exist for 1
6(1,2,3). In Fig. 3.6 below, two birationally related blow-ups are

displayed. It can further be checked that with the displayed vertices and
lines added, the singularities are smoothed out completely. Since all lie in a
common hyperplane, Rule (c) tells us that the blow-up takes place within the
CY-category.

Figure 3.6: Toric fans describing two different blow-ups of the 1
6(1,2,3) sin-

gularity. To the left: stardivision starts with the central vertex; to the right:
stardivision begins with the lower-central vertex.

Below, the following elementary observation will become relevant: excep-
tional divisors lying on a face of the original fans in Fig. 3.5 yield non-compact
exceptional divisors C × P1. In fact, the rules of the toric game equally ap-
ply to the subcone formed by that face. Since the face is a two-cone only, it
represents a (non-isolated) codimension-2 singularity locally modelled after
C× [C2/Zq]. Recall from Section 3.1.2 that the blow-up of the singularity in
C2 produces rational curves P1, from where the result follows. In contrast,
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blow-ups associated to internal vertices are compact.

C. Tying it up: from CFT to geometry III

Armed with insights from toric geometry, however rudimentary, it is shown
next, how these are related to CFT properties.

Age-grading and cohomology
The CFT-geometry correspondence in the RR-sector has an alternative ex-

planation besides the one presented on p. 44. To cut a fairly long story [58]
short, the procedure boils down to the following steps:

(a) Associate a number sg ∈ N to each g ∈ G as follows: if modings in
g-twisted sectors receive a shift by {νi}νi ∈ [−1

2 ,
1
2), then

sg ≡
∑
ν̃i ,

where ν̃i = νimod 1 and ν̃i ∈ [0,1).

(b) Project the cohomology of the fixed-point set H∗(Fg) of g onto its G-
invariant part H∗(Fg)G.

(c) Then, Hp,q(Fg)G contributes to Hp+s,q+s(Fg) of the resolved space.

In a separate development, the authors of Ref. [59] assigned numbers,
termed ages there, to individual group elements as well. With this concept of
age, a conjecture was put forward:

Conjecture 3.1 (Ito–Reid)

Age-1 group elements are in one-to-one correspondence with crepant excep-
tional divisors (i.e., elements of H4(X;Z)); in particular, their Poincaré-duals
base H2

c (X) of the blown-up space.

Comparison teaches that age(g)=sg , even though that link was not made.
In the special case of threefolds, age-2 elements were argued to yield a basis
for H4(X), and as such, they are related to 2-homology.

Let us quickly verify this in the examples studied so far. The ages in Ta-
ble 3.6-Table 3.8 are suggestive of the correspondence depicted in Fig. 3.7:
the added vertices in the figure are in one-to-one correspondence with age-1
elements in the Tables, although not canonically so. Observe, however, that
vertices lying on faces contribute a non-compact C × P1 to H4(X). It is soon
realised that the non-compactness is entirely due to the C-factor being invari-
ant under the subgroup G′, where the 2-cone represents the blown-up C2/G′.
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As such, the blow-up produces a compact P1; the conjecture only requires
an obvious minor modification to account correctly for the situation. As to
the remaining age-2 elements, string theory provides an alternative interpre-
tation: they complexify the Kähler forms in H2

c(X) with the B-field.
The issue seems worth further investigation, especially a generalisation to

the four-fold and non-abelian orbifold cases.

g, g−22

g, g
g, g

g, g g, g

g, g

g

g

g−1

g33 3 −3 −1

2 −2

4

−1

2

Figure 3.7: Toric fans for the singularities in the examples. Dots are the
intersections of the hyperplane with N . According to Rule (d) on p. 72, they
represent exceptional divisors produced in the blow-up.
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3.3 Zooming in yet closer – How do open strings and
D-branes discover space ?

This third section contains a review of the basic ingredients of orbifold D-
branes and their worldvolume theories. No essentially new material appears
here, since it was largely distilled from Ref. [60]

3.3.1 D-branes on orbifolds : the gauge theory picture

Definition

Given that orbifold CFTs make sensible type II vacua, and the fact that type II
theories contain D-brane objects, one may well wonder how to combine both
pieces of data. That is, we seek to answer the question:

“What makes a D-brane on an orbifold space ?”

The answer appears most naturally from the covering space point of view.
With M̃ a simply connected cover of the orbifold space, the latter is recovered
byM= M̃/G, where G is a discrete group. For the cases of interest to us M̃ ≈
CN , so I restrict to that case. To any point x ∈M corresponds an orbit G·x̃ ∈
M̃. As such a particle (D-brane) in the orbifold space corresponds to |G|
particles on the cover. From this picture, the |G| particles are permuted by the
orbifold action, and as such they naturally furnish the regular representation
CG. This program was first explored in the context of D-branes by Ref. [61]
for discrete translation groups and by Ref. [60] for discrete rotations.

Spectrum + interactions

The issue of the open string spectrum clearly factorises into two parts. First,
the oscillator Fock space Hij of open strings between branes i and j, is ob-
served to split into simple G-modules,

Hij =
⊕
K
H (K)
ij ⊗ RK (3.3.1)

where RK are G-irrepses, which may well be only projective. (In this notation,
the H (K)

ij are inert under G). The action on the oscillators descends from
the action on the coordinates, after identifying the latter with the 2d string
fields. In fact, this side of the story completely parallels the discussion of
Section 3.2.1.

Secondly, the branes i, j get permuted. So far i, j have been an arbitrary
abstract set of labels. The geometrical covering space point of view suggests a
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natural set of elementary branes. Burnside’s theorem asserts that the regular
representation decomposes into irreducibles

CG ≈
⊕
I

(
⊕dIRI

)
, (3.3.2)

with the dimensions dI of the irrepses providing the multiplicities. As such,
the indecomposable constituents (‘elementary branes’) get identified with ir-
repses RI . Beware that no true evidence besides the above handwaving-style
arguments has appeared here. Ultimately, it requires careful verification that
labelling boundary conditions with irrepses is a consistent procedure after
all. The steps involved in this program are postponed until the next Chapter,
the outcome of which will support the viewpoint adopted, indeed.

Henceforth, constituent branes will as such be labelled by I. In a more
traditional language, the I label the Chan–Paton factors arising from the brane
degeneracy on the covering space. By definition G acts by conjugation γ ·CG·
γ−1 on these Chan–Paton factors.

In all, the orbifold open string Hilbert space is given by

HG =
⊕
I,J

[(
⊕K∈IIJH (K)

IJ ⊗ RK
)
⊗
(
R†I × RJ

)]G
, (3.3.3)

i.e., only the G-invariant states are being kept. This orbifold projection in fact
guarantees that they descend to well-defined states on the quotient space. As
an aside, the reader’s attention is drawn on the fact that the complete open
string space is not a tensor product of a single oscillator space and some
Chan–Paton vector space. Rather, it is a sum (direct product) of such tensor
products.

A full specification of the D-brane theory requires the spectrum to be sup-
plemented with interactions. The recipe is straightforward enough and par-
allels the reasoning above, at least initially: start from the covering space
picture where the interactions are supposedly known. In the supersymmetric
case this is maximally supersymmetric U(|G|) Yang–Mills theory with adjoint
matter. Next, this theory is orbifold-projected, as given in Eq. (3.3.3). How-
ever, interaction terms that were originally forbidden in the parent theory
may cease to be so in the orbifold theory, due to the reduced (super)symmetry.
Such terms do not descend from the original theory, and they have to be
checked/argued separately. In favourable cases, remaining supersymmetry
can in fact be set to work in order to infer their presence. The latter feature
will be illustrated in Section 3.3.2.

Besides the Yang–Mills terms, which is the lowest-order-in-derivatives ap-
proximation to the Born–Infeld action, the D-brane action is well-known to
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contain a Wess–Zumino term. The presence of the latter has two important
reasons. First of all, it is required in order that the worldvolume action be
κ-symmetric, i.e. it is necessary for a supersymmetric worldvolume spectrum
to exist. Secondly, it induces anomaly inflow [62], thus preventing incon-
sistencies in the quantum worldvolume theory. For a detailed exposition,
see e.g., Ref. [63]. It is precisely the interplay of supersymmetry with the
Wess–Zumino term that provides a short-cut to guessing the right action. In
principle, interaction terms can always be verified from brute-force string am-
plitude evaluation [64, 65, 66]. With less sophistication, supersymmetry will
shortly be demonstrated to do the same job, basically.

Given the (classical) action, one would typically like to actually solve the
orbifold gauge theory. Vacua are found by solving the equations of motion.
A detailed example will be worked out in the next section. The main result to
note will be that the orbifold geometry is recovered as (part of) the D-brane
moduli space. In other words, the following is true, if D-branes are being used
to probe the geometry:

Fact 3.6

Space-time is recovered as the moduli space of D-branes.

This can hardly come as a surprise: it will be clear from the analysis below
that this moduli space in fact parametrises the G-equivariant D-brane config-
urations.

3.3.2 ADE orbifolds III

In this section, it is shown explicitly how things work in the by now fa-
miliar ADE orbifold case. To this end, put a regular representation of G
on the origin of the covering space C2. As before, supersymmetry preser-
vation requires that the orbifold group be holomorphically embedded, i.e.
(z1, z2) → (z1, z2)Q, where Q is the defining representation of G : Q ↩ 2 of
SU(2). This action is extended linearly on the corresponding complex N = 1
string superfield. For definiteness, pick G = ZN , and coordinates zi diagonal-
ising the action.

The D0 brane picture

Following the outlined strategy, the gauge theory massless spectrum is recov-
ered from the following considerations:
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(a) Fock space

The ground state energy in the NS-sector is −1
2 , since all open string os-

cillators are half-integrally moded. Massless NS-states thus correspond
to the lowest excitations of the fermionic fields. On the other hand,
massless Ramond ground states represent the space-time and trans-
verse Clifford algebras as usual. Table 3.9 concisely summarises the
low-energy spectrum.

Sector Fields SO(1,5)× SU(2)× SU(2)
NS ψμ (6,1,1)

ψ1, ψ̄2̄ (1,1,2)
ψ2, ψ̄1̄ (1,1, 2̄)

R 16s (4,2,1)⊕ (4,1,2)

Table 3.9: The massless open string spectrum in ADE orbifolds with G em-
bedded via Q in the second SU(2) factor.

(b) Chan-Paton factor

With a regular brane, there is anN-dimensional Chan-Paton vector space,
decomposing into N one-dimensional G simple modules RI : g ← ωI

(with ω a primitive root of unity and g a generator of G). As such, the
N × N Chan-Paton factor falls apart into 1 × 1 blocks and under the
regular action the (I, J)-entry gets multiplied by R†I (g)× RJ(g).

The massless spectrum is conveniently encoded in the N×N matrix below
(in d = 6 type IIB): ⎛⎜⎜⎜⎜⎜⎜⎜⎝

V H 0 . . . H
H V H 0 . . . 0
0 H V H

. . .
H V H

H 0 . . . H V

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.3.4)

where V (H) are d = 6, N = 1 vector multiplets ((half-)hypermultiplets) In
summary, the spectrum is that of half-maximally supersymmetric U(1)N SYM
with bifundamental matter. Note that the D-brane(s) break another half of the
one-half supersymmetry left unbroken by the background.

As to type IIA, the D4-branes come with the d = 5, N = 2 massless spec-
trum found upon dimensional reduction of Eq. (3.3.4), yielding a real massless
scalar a. In five dimensions, the off-shell completion of the N = 2 vectormul-
tiplet consists of an SU(2)R triplet of auxiliary scalars, yielding a bosonic



3.3 D-branes and spacetime 81

content (Aμ,a,Di). As such, it is natural to guess that the WZ-term linear in
Aμ , has an N = 2 supersymmetric completion:

∑
k

∫
C3,k ∧ Tr

[
γ(gk)dA+A∧A

]
+
∫
φk · Tr

[
γ(gk)D

]
, (3.3.5)

where the second term contains the ‘completion’. This follows from the obser-
vation that C3,k is the Ramond three-form potential Poincaré-dual to a scalar,
and the fact that the latter scalar together with the triplet metric moduliφi fill
out the bosons in an N = 2 linear hypermultiplet. The bulk-to-gauge-theory
couplings involving φk are Fayet–Iliopoulos terms and are in one-to-one cor-
respondence with the central traceless generators of the gauge group [67].

Similarly, in the dimensionally reduced IIB theory, the D3-brane d = 4, N =
2 completion of the WZ-term leads to:∑

k

∫
C2,k ∧ Tr

[
γ(gk)(dA+A∧A)

]
+
∫
φk · Tr

[
γ(gk)D

]
, (3.3.6)

where likewise, C2,k is dualised into a scalar; together with the metric moduli
the latter comprises the bosonic content of a linear hypermultiplet.

Besides the above couplings, the effective low-energy dynamics now fol-
lows from the combined dimensional reduction + orbifold projection of the
ten-dimensional U(N) gauge theory, supplemented with terms involving DΛ
(SU(2) indices are suppressed, henceforth) . More explicitly, the terms rele-
vant for the HM scalars are

L = Lkin +
∑
Λ

∫
DΛ · (DΛ + μΛ +φΛ) (3.3.7)

where Λ runs over the gauge group and φΛ ≡ 0 for non-central generators.
Further, the hypermultiplet scalars (z1,α, z2

α), transforming in (R,R†) of the
gauge group are conveniently organised into ”quaternions”:

Xα =
(
z1,α z̄α2
−z2

α z1,α

)
; (3.3.8)

from Xα, one defines the SU(2)R-triplet of sesquilinears μΛ = tr(σX†TΛX),
where TΛ is the representation matrix of the gauge algebra. The second term
in Eq. (3.3.7) yields the potential energy after integrating out the auxiliary DΛ.

Let us finally come to the moduli space of vacua, and let me for simplicity
reduce the IIB theory further to 1+ 0 dimensions. That is, we shall be using
(effective) D0 branes as probes of the geometry. The class of classical vacua
consists of constant field configurations, such that extremising the action
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corresponds to finding minima of the potential. As such, the field equations
become effectively,

μΛ = 〈φΛ〉 . (3.3.9)

However, the solutions present an overcomplete description of the actual
moduli space, in view of the gauge-equivalence present: the actual moduli
space is a further reduction to the space of gauge-equivalent orbits of solu-
tions.

The simplest examples, or ADE revisited

To gain some confidence, let us deal with the C2/ZN orbifolds very explicitly.
From Eq. (3.3.4) the gauge group is U(1)N , with bifundamental hypermulti-
plets:

Z1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 z1,1

0 z1,2
. . .

. . .
0 z1,N−1

z1,N 0

⎞⎟⎟⎟⎟⎟⎟⎠ ; (3.3.10)

and likewise ZT2 = Z1[z1 ↔ z2]. Next,

(a) constant finite gauge transformations can be used to set all phases equal:
arg(z1,i) = θ1;

(b) With Fayet–Iliopoulos terms set to zero, the equations of motion Eq. (3.3.9)
read

[Z1, Z2] = 0 ; [Z1, Z
†
1 ]+ [Z2, Z

†
2 ] = 0 , (3.3.11)

and impose further that arg(z2
i) = θ2, |z1,i| = r1, |z2

i| = r2. As such,
setting ui := rieiθi , the moduli space appears to be C2. However, the
gauge-fixing leaves a residual ZN symmetry that identifies (u1, u2) ≈
(e2π i/Nu1, e−2π i/Nu2). Therefore, the moduli space is rather C2/ZN .

In this limit, the D-brane moduli space indeed recovers the singular target
space as the moduli space of the gauge-theory. Once more, space-time shows
up as a secondary issue. Intuitively, it should be rather clear that turning on
non-zero FI-terms will smooth out the singularity.

Also, for Z2,3,4,6 this type of explicit analysis also allows for discrete trans-
lation groups besides the discrete rotations (see Ref. [67] for an implicit de-
scription). Similarly, the D-brane moduli space is then found to be T 4/ZN , as
expected.
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As a final comment, it must be noted that a non-trivial solution only exists,
provided (a number of copies of) the regular representation D-brane is put
on the orbifold space. Otherwise, the Higgs-branch does not open up. In
physical terms, this means that the branes are stuck at the orbifold point,
hence cannot move away. The latter feature will be in agreement with charge
quantisation, as discussed in Section 5.2.3.

3.3.3 Beyond the simplest orbifolds: tools

From the rather explicit exposition of the moduli spaces, it should have be-
come clear that the procedure outlined is tedious and lengthy, if not impossi-
ble, for more complicated orbifolds. Therefore, additional tools and technol-
ogy are more than welcome. Lack of space forces us to pick two prominent ex-
amples, thereby leaving out symplectic quotients (toric geometry) and further
techniques from algebraic geometry (coherent sheaves) that have appeared to
be valuable in the recent literature [68].

A. Hyperkähler quotients

As to orbifolds of C2 already, the explicit treatment above becomes undoable
as soon as the point group gets non-abelian. In fact, it remains an open
problem to do even the simplest D2 along those lines11. Schematically, the
moduli space was found as follows:

(a) Begin with free massless hypermultiplets, and couple those to Yang–
Mills theory through Eq. (3.3.7). This way, a potential is generated upon
integrating out the auxiliaries.

(b) Assume the gauge group G to sit inside SU(n), for some n.

(c) The moduli space is then

M〈φ〉 = {solutions of μ = 〈φ〉}
G-equivalence

. (3.3.12)

In fact, this is a physical realisation of a mathematical construct, known as a
hyperkähler quotient. This procedure yields an implicit description of M〈φ〉,
irrespective of the orbifold group being abelian or not. From the construction,
non-singularity of the quotient space can be argued, provided 〈φ〉 �= 0 [39].
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Figure 3.8: Three ADE quivers: An (top), Dn (middle) and E6 (bottom).

B. Quivers and what they can do for you

The data describing a quiver consist of the following:

(a) A collection of dots (vertices) {Va}, with correspondingly a vector of
positive integers (na).

(b) A collection of arrows (oriented edges) Iab connecting a dot a with a dot
b, and a vector of positive integers (mab);

All of this has a concise graphical representation, where dots a,b are con-
nected with mab(mba) arrows a→ b(a ← b).

11Quite likely, this is closely related to the fact that the An-series ALE metrics are explicitly
known, whereas the Dn, E6,7,8 are not.
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Quiver representations, then, are any set of objects (corresponding to
the vertices) and relations or homomorphisms (arrows) corresponding to the
quiver. For now, the quiver representations that will become most relevant
are the so-called

Quiver gauge theories
Quiver gauge theories are such that the gauge group is G = ∏

a U(na), with
matter transforming in the bifundamental (n̄a,nb),∀(a, b)↔ Iab. Pictorially,
this is the following assignment:

© ⇐⇒ (gauge groups)

vector multiplets �→ ⇐⇒ (matter)

chiral multiplets

Loosely speaking, one may interpret the quiver diagram quite physically, by
taking the © for branes and the �→ for (massless) strings stretching between
them.

Of all possible quiver diagrams, a subset presents a concise graphical rep-
resentation of the matter content of orbifold gauge theories. The C2/G quiv-
ers are listed in Fig. 3.8. Inspection teaches that they closely resemble affine
Dynkin diagrams. To be more precise, it is the corresponding unoriented
quiver, obtained by replacing pairs of oppositely oriented edges by lines, that
coincides with the affine diagram. In fact, this feature is related to McKay
correspondence (see Chapter 5).
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In this chapter, we review the systematic approach to boundary states. The
recurrent theme throughout will be that boundary conditions are strongly or-
ganised by the symmetries they preserve. In the particular case of conformal-
symmetry-preserving boundary conditions, the associated boundary states
will even turn out to be purely encoded in CFT data.

Basically, the boundary state issue involves an answer to the twofold ques-
tion:

(a) Classify all (sets of) boundary conditions.

(b) Construct the corresponding boundary states and obtain thus all solu-
tions implementing the conditions.

Section 4.1 illustrates question (a) through the example of the N = 4 su-
perconformal algebra, while the remainder of the chapter is devoted to (b).
The complete classification of boundary conditions for general CFTs is an
unsolved problem, as far as we are aware. Therefore, Section 4.1 serves illus-
trative purposes solely by means of flat-space D-branes. The main point to
be made is that the N = 4 worldsheet SCA is the organising principle in the
classification of boundary conditions in this specific setting.

Boundary states in rational CFTs (RCFTs) are the subject of Section 4.2.
Cardy’s original derivation [69] of the open-closed consistency constraint on
boundary states, Eq. (4.2.16), and his construction of a generating set of solu-
tions, Eq. (4.2.19), are reviewed.

Next, as a warm-up, a detailed account of Cardy’s construction of flat-
space D-brane boundary states in type II theories is given in Section 4.3.
Particular attention is paid to the construction of the fermion components
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and the global normalisation of the boundary states: in contrast to the well-
studied bosonic piece, both issues do not seem to have been studied from the
Cardy point of view before Ref. [1] appeared.

Finally, Section 4.4 contains the results of Ref. [1], which constitute the
main novelty of the presented material. In short, Cardy’s construction is ap-
propriately generalised so as to yield orbifold D-brane boundary states, the
so-called BPS fractional D-brane states.

The setting for the sequel will be as follows : in the 2d worldsheet theory
one has a symmetry algebra AL ×AR of left- and right-moving symmetries,
consisting of two copies of A. The global automorphism group of A is de-
noted by Aut(A).

The unravelling of the systematics of boundary conditions comprises at
least two components:

(a) Which are the boundary conditions preserving a given subalgebra B of
the diagonal AΔ ?

(b) Which are mutually consistent sets of boundary conditions ?

By ‘diagonal’, we shall mean an algebra that may be identified with the first
factor, while it is identified with the second factor only up to some automor-
phism Ω ∈ Aut(A).

4.1 Step up: boundary conditions in SCFTs

Take A to be the N = 4 SCA. The preserved diagonal subalgebra B of AL ×
Ω(AR) will generically contain some fraction of preserved worldsheet super-
symmetry out of the total NL + NR = 4 + 4 present. Besides B, additional
operators (‘extensions’) of the SCA often play a distinguished rôle too. In par-
ticular, since spectral flow operators are in one-to-one correspondence with
space-time supersymmetries, any question addressing the latter necessarily
involves the former [70, 71]. In the case of some non-zero fraction of unbro-
ken space-time SUSY, the resulting states are called BPS.

First thing to note here, is that Aut(A) = SO(4) ≈ SU(2)int × SU(2)out ,
consisting of an internal (local) and an outer SU(2) group. The four super-
currents Ga± transform as (2,2), and the N = 1 supercurrent is identified as
G0+ +G0−. Since the corresponding N = 1 SCA is gauged its generators should
be form-invariant:

TL = TR (4.1.1)
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G0
+,L +G0

−,L = ±(G0
+,R +G0

−,R) (4.1.2)

while the remaining generators are allowed to get mixed. As a result, only
the diagonal SU(2) ⊂ SO(4), i.e., the SU(2) subgroup under which the N = 1
supercurrent is a singlet, may be used to glue left- and right-moving symme-
try currents. The remaining currents form a 3 representation of this SU(2).
Choosing a basis G,GI adapted to this decomposition, we are effectively left
with an SO(3) choice of automorphisms encoded in the matrix RIJ :

GL = ±GR ; GIL = ±RIJGJR , (4.1.3)

if we wish to preserve some diagonal N = 4 SCA. Likewise, the affine SU(2)
currents must then be related by

JIL = RIKJKR ; (4.1.4)

Select a particular current J0, say. In bosonised form, J0 = i∂φ. The
operation φ → φ + θ leaves J0 manifestly untouched, yielding an eigenvalue
1 in Eq. (4.1.4). For R ∈ SO(3) the remaining two eigenvalues have to be such
that their product equals 1 if some diagonal N = 4 SCA is to be preserved.
That this is the case, follows straightaway, since J± = e±iaφ. In fact, shifting
φ by a constant is an automorphism of the full N = 4 SCA.

As to the extensions (spectral flows) of the N = 4 SCA, they require a sep-
arate analysis [70]. Also, it is possible, in principle, to extend the foregoing
analysis to B ⊊A. In string theory, boundary conditions of this type are ex-
pected to be realised by superpositions of D-branes at best, rather than single
D-brane configurations. Since single constituent branes are the objects of pri-
mary interest, we refrain from a further analysis here (but see e.g., Ref. [70]).

Flat space and N = 4
Instead, we now turn to an explicit model by picking up the example of flat

space free bosons and fermions. To make life easy, set R1,9 ≈ R1,5 × C2 and
neglect the first factor for a while. From the worldsheet N = 1 superfields
X̂μ = Xμ + θψμ (μ = 1, . . . ,4), define new worldsheet fields that take values
in the target space tangent bundle TC2:

X ≡ Xμ ⊗ ∂μ ; (4.1.5)

Ψ ≡ ψμ ⊗ ∂μ . (4.1.6)

The latter make a compact notation for the various symmetry generators in
the N = 4 SCA possible [72]:

T = G(∂X, ∂X)+G(Ψ , ∂Ψ) ; (4.1.7)
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Gi =
{
G(Ψ , ∂X)+ iK3(Ψ , ∂X)
K1(Ψ , ∂X)+ iK2(Ψ , ∂X) (4.1.8)

Ḡı̄ =
{
G(Ψ , ∂X)− iK3(Ψ , ∂X)
K1(Ψ , ∂X)− iK2(Ψ , ∂X) (4.1.9)

Ja = Ka(Ψ ,Ψ) (4.1.10)

where G,Ka are the relevant metric and complex structures on the target.
Furthermore, the spectral flows,

ψ1ψ2 ≈ U±
−1 = ei

√
2φ ; (4.1.11)

ψ1ψ̄2 ≈ V±
−1 = ei

√
2χ , (4.1.12)

and their conjugates are 4 when counted chirally, yielding a total of 8. The
canonically normalised φ in Eq. (4.1.11) is such that J0 = i

√
2∂φ.

Instead of the real basis of Eq. (4.1.5), let us choose a complex coordinate
system: Ẑi = X̂2i−1 + iX̂2i. Through Eq. (4.1.7)-Eq. (4.1.12), boundary condi-
tions on the symmetry generators and spectral flows are induced from those
imposed on the elementary superfields Ẑi. The choice

Ẑ1
L = eiαẐ1

R , Ẑ
2
L = eiβẐ2

R , (4.1.13)

leads to φL = φR+(α+β)/
√

2. As such, the matrix R in Eq. (4.1.4) is diagonal

JL =

⎛⎜⎝ ei(α+β) 0 0
0 1 0
0 0 e−i(α+β)

⎞⎟⎠ JR , (4.1.14)

and likewise for the supercurrent triplet. In all, each pair (α,β) identifies a
particular preserved diagonal N = 4 SCA.

How about the preserved space-time supersymmetries ? Since the left- and
right-moving spectral flows are related by four linear conditions, only half of
them are preserved at the boundary. As such, the corresponding D-brane is
said to be 1

2 -BPS.

It is an obvious fact that the analysis of boundary conditions is useful
beyond conformal field theory applications. As an example, one may wish
to inquire properties of boundary states in gauged linear sigma models [73],
where two-dimensional worldsheet supersymmetry, rather than superconfor-
mal symmetry, is the crucial preserved symmetry. Since it lies somewhat
outside the scope, we shall not pursue this here.
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4.2 And beyond : Cardy’s approach to boundary states

In this section, Cardy’s construction of consistent boundary states is reviewed.
Basically, such states are constructed from knowledge of the modular S-
matrix, following a canonical recipe. The whole procedure can be traced back
to implementing open-closed consistency in the CFT on the cylinder. The
original derivation in [69], applicable to rational CFTs, is closely followed. In
subsequent sections, the procedure will be demonstrated to be generalisable
to specific instances of non-rational CFTs as well.

4.2.1 The safe ground : rational CFT

Rational CFT is a realisation of holomorphic and anti-holomorphic symmetry
algebras AL × AR , both containing the Virasoro algebra, with only a finite
number of primaries. In the case of diagonal modular invariants, the resulting
closed string Hilbert space decomposes as

H =
⊕
i
[φi]⊗ [φ̃i] (4.2.1)

The Virasoro characters in the corresponding irreducible modules are defined
by

χi(q) = triqL0− c
24 , (4.2.2)

where q = e2π iτ , with τ the modular parameter. I shall only consider purely
imaginary τ.

As already outlined in Section 4.1 a diagonal subalgebra B of AL×Ω(AR)
is picked. The boundary states to be constructed should preserve this B.
As such the choice of A will largely determine what kind of D-branes (open
strings, boundary states) one wishes to keep in the theory.

At world-sheet boundaries the generators of the holomorphic and the anti-
holomorphic embeddings of A are related through gluing conditions. This is
rephrased alternatively : if B is identified as a subalgebra of AL, it need only
be so in AR up to automorphisms of the latter.

Not to make things messier than strictly needed, the preserved diagonal
symmetry algebra A will be assumed to be isomorphic to the algebras AL
and AR Furthermore, a diagonal modular invariant will be assumed, i.e.,

Z(q, q̄) =
∑
j
χj(q)

(
χj(q)

)∗
. (4.2.3)
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Consider the cylinder amplitude with boundary conditions labeled by α
and β. In the loop channel, one has

Zαβ =
∑
i
niαβχi(q) , (4.2.4)

where the integers niαβ denote the multiplicities of the representations i run-
ning in the loop. Alternatively, this same amplitude can be viewed as a closed
string tree level amplitude. It then reads

Zαβ = 〈α|q̃
1
2 (L0+L̃0− c

12 )|β〉 , (4.2.5)

where q̃ = e−2π i/τ . Eq. (4.2.5) is the closed-string exchange between D-branes
α,β, denoted symbolically by the corresponding boundary states. These
boundary states 〈α| and |β〉 are assumed to impose the boundary condition(

W(r)
n − (−)sΩ(W̃ (r)

−n )
)
= 0 (4.2.6)

on the Fourier modes of the symmetry generators; that is,(
W(r)
n − (−)sΩ(W̃ (r)

−n )
)
|β〉 = 0 , (4.2.7)

where s is the spin of W(r) and Ω ∈ Aut(AR)1 of the preserved algebra A.
As an example, take W(r) to be J+ of Section 4.1. Since the spin s = 1, the
boundary condition in Eq. (4.2.7) becomes in terms of Fourier-modes

J+n + ei(α+β)J̃+−n = 0 , n ∈ Z , (4.2.8)

where Ω acts as multiplication by exp(i(α + β)) as in the previous section.
Invoking simplicity of the exposition once more, Ω will be assumed to be the
trivial automorphism.

The way to proceed from here is to choose a convenient basis of solutions
to Eq. (4.2.7), the so-called Ishibashi states [74]. The consistent boundary states
are then built as particular linear combinations of such states. Consider a
highest weight module of [φj] of AL and the corresponding (isomorphic)
module [φ̃j] of AR . The states of [φj] are linear combinations of states of

the form
∏
I W

(ri)−nI |j; 0〉, where the W(ri)−nI are lowering operators and |j; 0〉 is
the highest weight state. Denote the elements of an orthonormal basis of the

module [φj] by |j;N〉 and the corresponding basis of [φ̃j] by�|j;N〉. In terms
of the anti-unitary operator U defined by

U�|j; 0〉 =�|j; 0〉
∗

; UW̃(rI)−nI U
−1 = (−)srI W̃ (rI)−nI , (4.2.9)

1For instance, in the case of a free boson, choosing Ω the trivial automorphism corresponds
to Neumann boundary conditions, while a non-trivial one gives Dirichlet conditions (see Sec-
tion 4.3 below).
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the states
|j〉〉 ≡

∑
N
|j;N〉 ⊗U�|j;N〉 (4.2.10)

clearly solve Eq. (4.2.7) (for Ω = 1). Now these are the Ishibashi states.

4.2.2 Cardy’s condition

With the Ansatz that consistent boundary states are in the linear span of the
space of Ishibashi states of Eq. (4.2.10):

|α〉 =
∑
j
Bjα|j〉〉 , (4.2.11)

Eq. (4.2.5) takes the form

Zαβ =
∑
j
(Bjα)∗B

j
βχj(q̃) . (4.2.12)

Here,
χj(q̃) = 〈〈j|q̃

1
2 (L0+L̃0− c

12 )|j〉〉 = trjq̃L0− c
24 . (4.2.13)

is consistent with Eq. (4.2.2). In deriving Eq. (4.2.12), we have used that the
Ishibashi states are orthogonal, in the sense that

〈〈j′|q̃ 1
2 (L0+L̃0− c

12 )|j〉〉 = 0 if j ≠ j′ . (4.2.14)

Eq. (4.2.4) is transformed to the tree channel by the modular S transforma-
tion:

Zαβ =
∑
i,j
niαβS

j
i χj(q̃) . (4.2.15)

Recall that the niαβ count multiplicities of the characters running in the loop,

hence niαβ ∈ N. To impose open-closed consistency of the cylinder amplitude
amounts to demanding equality of Eq. (4.2.12) and Eq. (4.2.15). Eventually,
this yields the key equation∑

i
Sji n

i
αβ = (B

j
α)∗B

j
β , (4.2.16)

at least, if no two representations of the holomorphic algebra have the same
Virasoro character. Eq. (4.2.16) is commonly referred to as Cardy’s equation.
The requirement that the multiplicities niαβ be nonnegative integer numbers

is a strong condition on the coefficients Bjα. Furthermore, this constraint is
nonlinear: multiplying a consistent boundary state by a noninteger number
will generically not yield a consistent boundary state. The task of finding
mutually consistent sets {Bjα} defining consistent boundary states (D-branes)
is taken up in the next subsection.
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4.2.3 Cardy’s solution

In [69], Cardy gave a set of solutions to his equation Eq. (4.2.16). In a first
step, one consistent boundary state, |0〉, is singled out by the requirement
that ni00 = δi0 in Eq. (4.2.15); that is, the only representation running in the
loop channel is the identity representation. From Eq. (4.2.16), such a state
necessarily satisfies

|Bj0|2 = S
j
0 . (4.2.17)

The entries Sj0 of the modular transformation matrix are positive [69], so
Eq. (4.2.17) is consistent. It implies

|0〉 =
∑
j

√
Sj0|j〉〉 (4.2.18)

(up to the relative phases of the coefficients, which are not fixed by these
considerations).

Additional boundary states |l〉 are built next, with the distinguishing prop-
erty that ni0l = δil , for every primary φl. Using Eq. (4.2.16), Eq. (4.2.17) and

the fact that Sj0 > 0, these states are found to be

|l〉 =
∑
j

Sjl√
Sj0
|j〉〉 . (4.2.19)

In Cardy’s solution, the multiplicities niαβ coincide with the fusion rule coeffi-
cients of the algebraA. That the boundary states Eq. (4.2.19) solve Eq. (4.2.16)
is then verified as a consequence of Verlinde’s formula Eq. (2.2.11) [16, 69].

At this point, let us look back and summarise what has been found thus
far:

Fact 4.1

A set of consistent boundary states is in the linear span of the Ishibashi
states, which in turn provide a basis of solutions to the gluing condi-
tions.

Fact 4.2

The particular coefficients Biα come for free with rational CFTs; more
particularly, they are encoded in the modular S-matrix and the mutual
consistency is an immediate consequence of the Verlinde formula.
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These will remain the cornerstones in the generalisation of Cardy’s construc-
tion to a class of CFTs that are not strictly rational.

It remains an important open question whether the consistent (Cardy)
states comprise an integral basis of the space of all consistent boundary
states.

4.3 Boundary states for flat space D-branes

Cardy’s construction is clearly valid for arbitrary rational CFTs. Nevertheless,
it is instructive to see how it applies to free bosons and fermions. Strictly
speaking, the free bosons do not generically constitute rational CFTs, except
in specific cases such as bosons on rational tori. As it will come out, the
validity of the prescription persists; in hindsight, this should not come as a
surprise since free bosons are in a sense the simplest CFTs beyond rational
models. The discussion borrows largely from Ref. [14, 75] for the bosons,
while the fermions were treated in Ref. [1].

4.3.1 Boson boundary state

Generic features

Consider strings moving in a Minkowski background. The corresponding CFT
is a tensor-product of single boson CFTs and Cardy’s construction factorises
accordingly. As such, we can do with the discussion of a single boson X first.
Also, to take the safe road, X is assumed to be compactified on a circle of
radius R : X(σ + 2π) = X(σ) + 2πRn for some n ∈ Z. The chiral sym-
metry algebra AL contains the unit operator, and for generic values of R it
is generated by the chiral energy-momentum tensor T and the U(1) symme-
try current JL = ∂X (and likewise for the anti-chiral counterpart). Further,
Aut(AL) = Z2, where the non-trivial element acts as J → −J .

In the holomorphic and anti-holomorphic sectors, the Fourier modes αn
and α̃n are defined by

JL(z) = −i

√
α′

2

∞∑
m=−∞

αmz−m−1 ; JR(z̄) = −i

√
α′

2

∞∑
m=−∞

α̃mz̄−m−1 (4.3.1)

and they obey the algebra [αm,αn] = [α̃m, α̃n] =mδm+n
On a generic circle, this CFT has an infinite number of highest weight

states |(k,w)〉 (k,w ∈ Z). These have no oscillators excited and are defined
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by

p̂|(k,w)〉 = k
R
|(k,w)〉 ; (4.3.2)

ŵ|(k,w)〉 = w|(k,w)〉 , (4.3.3)

with p̂ = (α0 + α̃0)/
√

2α′, and ŵ =
√
α′
2 (α0 − α̃0)/R.

AutomorphismsΩ ofAR , impose the following gluing conditions at world-
sheet boundaries (see Eq. (4.2.7)):

(αn +Ω(α̃−n)) |i〉〉Ω = 0 . (4.3.4)

Further, on |i〉〉Ω the left-moving and right-moving closed string Virasoro op-
erators get identified: (Lc0 − L̃c0)|i〉〉Ω = 0, irrespective of Ω.

Neumann boundary states

With Ω = IdA, the boundary conditions Eq. (4.3.4) are recognised as Neumann
boundary conditions, whereas Dirichlet conditions are realised by Ω(JR) =
−JR. Generalised Ishibashi states for Dirichlet or Neumann gluing conditions
will be denoted by |i〉〉D, |i〉〉N , respectively.

With Neumann boundary conditions, the Ishibashi states are

|(0,w)〉〉N = exp

⎛⎝− ∞∑
n=1

1
n
α−nα̃−n

⎞⎠ |(0,w)〉 (4.3.5)

with corresponding Ishibashi characters as in Eq. (4.2.13)

χN,w(q̃) = q̃
R2w2

4α′

η(q̃)
. (4.3.6)

The Ishibashi states of Eq. (4.3.5) satisfy the orthogonality condition Eq. (4.2.14).
Notice that the highest weight representations [φj] of the chiral preserved
chiral algebra are labeled by the winding number j = (0,w) here. The or-
thonormal set of basis vectors |j;N〉 becomes |(0,w); {mn}〉 in this concrete
setting, wheremn denote the α−n oscillator numbers.

With Neumann boundary conditions along the compact X direction, open
strings are allowed to carry non-zero momentum along that direction, such
that the corresponding open string character χ(q)N = TrN(qL

o
0) involves a

sum over discrete momenta. Moreover, one can turn on a Wilson line AX =
θ

2πR with θ ∈ [0,2π); this is equivalent to shifting the open string momenta:
n
R →

n
R −

θ
2πR . Thus, the generic open string character χ(q)N,θ reads
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χ(q)N,θ =
∑
n∈Z

q(
n
R−

θ
2πR )

2

η(q)
(4.3.7)

= R√
2α′

∑
w∈Z

eiθw q̃
R2w2

4α′

η(q̃)
= R√

2α′
∑
w∈Z

eiθw χN,w(q̃) ,

where in the second line a Poisson resummation was performed. Correspond-
ingly, the consistent boundary states are

|θ〉N =
(
R√
2α′

)1/2 ∑
w∈Z

eiθw |(0,w)〉〉N . (4.3.8)

These states take the form of Eq. (4.2.19), indeed, with Swθ = R√
2α′ e

iθw . The
rôle of the distinguished Cardy’s state |0〉 is clearly played by the state de-
scribing a D-brane with no Wilson line, |0〉N .

Dirichlet boundary states

Let me turn to Dirichlet boundary conditions next. As said, this amounts
to taking Ω = − on JR . This is recognised as an implementation of T-
duality (which is a one-sided parity transformation by definition). Instead
of Eq. (4.3.5), the generalised Ishibashi states now read

|(k,0)〉〉D = exp

⎛⎝ ∞∑
n=1

1
n
α−nα̃−n

⎞⎠ |(k,0)〉 , (4.3.9)

and the corresponding Ishibashi characters Eq. (4.2.13) become

χD,k = q̃
α′k2

4R2

η(q̃)
. (4.3.10)

Dirichlet boundary conditions at both ends set the open string momenta
along X to zero but allow non-zero windings, which must accordingly be
summed over in the character. Open strings stretching between two D-branes
that are separated by a distance Δx, result in a character TrD(qL

o
0)

χ(q)D,Δx = q
(2πRw+Δx)2

4π2α′

η(q)
(4.3.11)

=
√
α′√
2R

∑
k∈Z

eiΔx kR
q̃
α′k2

4R2

η(q̃)
=
√
α′√
2R

∑
k∈Z

eiΔx kR χD,k(q̃) ,
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where in the second line we went to the tree channel once more by Poisson
resummation.

Following Cardy, the consistent Dirichlet boundary states are then

|x〉D =
( √

α′√
2R

)1/2 ∑
k∈Z

eix kR |(k,0)〉〉D , (4.3.12)

and the distinguished state |0〉 is nothing but |x = 0〉D.
The close analogy between Eq. (4.3.8) and Eq. (4.3.12) reflects the fact that

turning on Wilson lines and shifting positions of branes are T-dual operations.
Let us conclude here with a number of remarks:

(a) The above discussion was restricted to the CFT of one free boson to
keep matters simple. Already here, it is nice to find that the ratio of the
coefficients in front of |θ = 0〉N and |x = 0〉D is (2πR)/(2π

√
α′), since

it confirms [76] that the relative tensions differ by 1
2π
√
α′ [77].

(b) Regarding the states in Eq. (4.3.8) and Eq. (4.3.12) as constituents, the
generalisation to the multi-boson CFT is obvious and consists of taking
tensor products of the appropriate constituents, where an independent
choice of Neumann or Dirichlet condition is left for each boson sepa-
rately. Moreover, with nD (nN) Dirichlet (Neumann) boundary condi-
tions chosen, it is clear that the

∏
i Z2 automorphism group of AR gets

enhanced to the space-time rotation group SO(1, nN−1)×SO(nD). Since
this extension is trivial, we won’t pursue it further.

(c) In the decompactification limit R → ∞, the states |(k,0)〉 appearing in
Eq. (4.3.9) are normalised to have unit-norm. As such, they differ from
the states eikx̂|0〉 that are usually considered in string theory by a factor
of 1/

√
2πR. When the manifest 1/

√
R factor in Eq. (4.3.12) is properly

taken into account, the R-dependence will be just right to turn the dis-
crete momentum sum in Eq. (4.3.12) into a momentum integral. This
integral is the delta function in position space: it localises the brane in
the transverse directions (see, for instance, Refs [13, 78]).

4.3.2 Fermion boundary state

Let us next focus on the world-sheet fermions. Like in Section 2.2.4 fermions
will be dealt with in a covariant formalism, thus combining them with the
superghost-system. It was further explained there that the covariant chiral
characters coincide with their light-cone SO(8)1 counterparts, apart from the
subtlety that in fusion rules etc. the rôles of o and v are exchanged, and the
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s, c characters pick up a minus sign. In short, the Ishibashi and Cardy states
to be constructed below will be so in the covariant framework, even though
the characters obtained from them appear only SO(8) (light-cone)-like.

Let us first consider type 0B theory where the bulk partition function is
diagonal:

Z0B(q)∝ (|χo(q)|2 + |χv(q)|2 + |χs(q)|2 + |χc(q)|2) , (4.3.13)

The contribution of the bosonic string fields completes this expression to the
full type 0B torus partition function, but this is suppressed temporarily.

Given this bulk CFT, boundaries may be introduced in string world-sheets:
attention will be focused on D9-branes, preserving the full Lorentz, whence
SO(8) invariance in light-cone gauge. The Dp-branes with p < 9 are obtained
by T-duality.

As to boundary conditions, in both the NS-NS and R-R sectors, two gluing
conditions are possible:

ψr = iηψ̃−r , (4.3.14)

where η = ±1. The Ishibashi states solving these conditions as in Eq. (4.2.10)
are

|σ ;η〉〉 =
∏
μ

exp

⎡⎣iη
∑
r>0

ψμ−r ψ̃
μ
−r

⎤⎦ |σ,η; 0〉〉 , (4.3.15)

with σ = NS,R indicating the NS-NS or R-R sector and μ running over the
directions transverse to the light-cone. In the R-R (NS-NS) sector, the mode
numbers r are (half-)integer. Also, there is a non-trivial zero-mode part in the
R-R sector:

|R, η; 0〉〉 = M(η)
AB |A〉|B̃〉 , (4.3.16)

where

M(η) = CΓ 0Γ l1 . . . Γ lp
(

1+ iηΓ11

1+ iη

)
; (4.3.17)

C is the charge conjugation matrix and li label the space directions along
the D-brane world-volume. The vacuum states |A〉|B̃〉 for the fermionic zero-
modes ψμ0 and ψ̃μ0 transform in the 32-dimensional Majorana representation.

The states in Eq. (4.3.15) fail to meet the condition in Eq. (4.2.13), a situa-
tion which is remedied by taking linear combinations:

|v〉〉 = 1
2
(|NS,+〉〉 − |NS,−〉〉) ; (4.3.18)

|o〉〉 = 1
2
(|NS,+〉〉 + |NS,−〉〉) ; (4.3.19)

|s〉〉 = 1
2
(|R,+〉〉 + |R,−〉〉) ; (4.3.20)
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|c〉〉 = 1
2
(|R,+〉〉 − |R,−〉〉) . (4.3.21)

Not only are they mutually orthogonal, they survive the type 0B GSO pro-
jection 1

2(1 + (−)F+F̃ ). The above labeling follows the general convention of
Eq. (4.2.13); the corresponding chiral blocks may indeed be verified to be:

〈〈m|q̃ 1
2 (L0+L̃0− c

12 )|n〉〉 = δmn χm(q̃) , (4.3.22)

withm,n = o,v, s, c. Thus we are done with the Ishibashi states. From these
Ishibashi states consistent boundary states |a〉, with a = v, o, s, c are derived
using Cardy’s prescription. After all, the fermion CFT is rational, so there is
no reason to doubt the validity of the procedure.

Taking the covariant versus light-cone subtleties into account, it follows
from the S matrix of Section 2.2.4 that consistent boundary states are

|v〉 = 1√
2

∑
m
|m〉〉 = 1√

2
(|v〉〉 + |o〉〉 + |s〉〉 + |c〉〉)

= 1√
2
(|NS,+〉〉 + |R,+〉〉) ,

|o〉 =
√

2
∑
m
(S(8))mv |m〉〉 =

1√
2
(|v〉〉 + |o〉〉 − |s〉〉 − |c〉〉)

= 1√
2
(|NS,+〉〉 − |R,+〉〉) ,

|s〉 =
√

2
∑
m
(S(8))ms |m〉〉 =

1√
2
(|v〉〉 − |o〉〉 + |s〉〉 − |c〉〉)

= 1√
2
(−|NS,−〉〉 + |R,−〉〉) ,

|c〉 =
√

2
∑
m
(S(8))ms |m〉〉 =

1√
2
(|v〉〉 − |o〉〉 − |s〉〉 + |c〉〉)

= 1√
2
(−|NS,−〉〉 − |R,−〉〉) . (4.3.23)

These states are the type 0B boundary states that may be found in the litera-
ture [79, 80, 81]. The states |v〉 and |o〉 are commonly referred to as electric
D9-brane and anti-D9-brane, respectively, while |s〉 and |c〉 are called mag-
netic D9-brane and anti-D9-brane.

Next, move on to supersymmetric type IIB theory, with a one-loop partition
function

ZIIB(q)∝ |χv(q)+ χs(q)|2 . (4.3.24)

This is an example where Cardy’s prescription cannot be implemented straight-
away. Let me first proceed with a modified construction and postpone com-
ments temporarily.
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The open string characters running in the loop channel can be organised
into the column vector χ̂A (A = 0,1,2,3) where

χ̂A(q) ≡ (χv + χs, χo + χc, χv − χs, χo − χc) , (4.3.25)

while the tree-channel χ̂M(q̃) = (χv, χs, χo, χc). The net result of the base-
change operation is that the modular S matrix, defined by χ̂A(q) = ŜMA χ̂M(q̃),
takes the form

Ŝ =

⎛⎜⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞⎟⎟⎟⎠ . (4.3.26)

Following Cardy’s formula for the Biα coefficients, the consistent states are
built from the newly defined Ŝ:

|Â〉 = ŜMA√
ŜM0
|M̂〉〉 . (4.3.27)

Only the Ishibashi components |v〉〉, |s〉〉 in Eq. (4.3.18) and Eq. (4.3.20) survive
the closed-string GSO-projection. Equivalently, only the upper-left block in Ŝ
yields properly projected closed-string states. With this restriction, the first
row in Ŝ identifies χv + χs as the character playing the rôle of the identity in
Cardy’s setup.

|v − s〉 =
∑
M̂

|M̂〉〉 = |v〉〉 + |s〉〉

= 1
2
(|NS,+〉〉 − |NS,−〉〉 + |R,+〉〉 + |R,−〉〉) ,

|o − c〉 =
∑
M̂

ŜM̂1 |M̂〉〉 = |v〉〉 − |s〉〉

= 1
2
(|NS,+〉〉 − |NS,−〉〉 − |R,+〉〉 − |R,−〉〉) , (4.3.28)

where the labeling is as in Section 4.2.3 In particular, these yield

Zv−s,v−s = Zo−c,o−c = χv − χs ; (4.3.29)

Zv−s,o−c = Zo−c,v−s = χo − χc , (4.3.30)

which are the D9-D9 and D9-D̄9 amplitudes, indeed. Consistently, |v − s〉
and |o − c〉 are observed to coincide with the common expressions for IIB D9
and anti-D9 boundary states that had been derived on other grounds already
in [82].
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This Cardy-like derivation of consistent type II theory boundary states
does not seem to display the same degree of rigour as that in the original
derivation. Observe, though, that this situation could have been expected on
the following grounds. If string theory is believed to contain a certain physi-
cal truth, it must not come as a complete surprise that Cardy’s prescription,
intrinsic to CFT, has to be supplemented by additional, extrinsic physical con-
siderations at some point. In other words, the initial recipe produces D-brane
states that are perfectly valid from the CFT point of view, but are discarded
on physical grounds. For example:

(a) States with the opposite GSO-projection could not possibly couple to the
graviton. Therefore, such objects would not have a proper notion of
energy-density, whence mass; this seems to be viable enough a reason
to discard those.

(b) Had such states been kept in the theory nevertheless, there would be
open string channels where space-time fermion characters contribute
with the same sign as the bosons, thus violating space-time spin-statistics.

In the foregoing analysis, the mild modification to project onto proper closed-
string-GSO states is observed to kill the potentially unphysical states.

Thus far, only parallel D-branes of like dimensions have been the issue.
Whenever more general configurations involving D-branes of different dimen-
sions are considered, mutual consistency must be checked independently.
Generically, this will impose additional constraints. For example, one learns
that in type IIA theory with BPS Dp branes for even p, only non-BPS Dq-branes
with odd q can be added consistently (see, for instance, [83]).

4.3.3 String theory : bosonic zero-modes and global normali-
sation

As they stand, the Cardy boundary states are consistent as far as the CFT
is concerned. However, for them to become meaningful in a string theory
context, two more pieces of input are required:

(a) Modular integration
Since string theory involves families of CFTs, rather than the single CFTs
considered so far, one must revise open-closed consistency. The proper
string theory loop channel quantity becomes

Z1,2 = Vp+1

∫ i∞

0

dτ
τ
Z(d)1,2 (q) , (4.3.31)
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where the modulus τ parametrises inequivalent worldsheet cylinders.
In the tree channel, the modular integral produces a closed-string prop-
agator:

〈B1| α
′

4π

∫
|z|<1

d2z
|z|2 z

L0−az̄L̃0−ã |B2〉 . (4.3.32)

Open-closed consistency now requires that the quantities in Eq. (4.3.31)
and Eq. (4.3.32) match. Note that the canonical propagator in Eq. (4.3.32)
involves a normalisation that Cardy’s prescription could not possibly
tell, whence the need for this extra input.

(b) Global normalisation
Although not manifest, the amplitudes in Eq. (4.3.31) and Eq. (4.3.32)
involve integrals over momenta (bosonic zero-modes). These will shortly
be shown to result in additional normalisation factors.

Let us deal with point (b) first. In the open-string channel non-trivial mo-
menta are present for Neumann–Neumann boundary conditions, thus yield-
ing a total contribution[∫∞

−∞
dk
2π

e
1
2α

′πτk2
]p+1

=
( √

2
π
√
α′

)p+1

× . . . (4.3.33)

for pp-strings. The ellipsis denotes the appropriate inverse power of τ, which
is most easily verified to play no rôle in this story. On the closed-string side,
however, transverse (Dirichlet) momentum integrals are implicit in the con-
struction of the boundary state (see Eq. (4.3.11)). In d space-time dimensions,
we therefore find

N2
p ×

α′

4π
×
[∫∞

−∞
dk
2π

e2α′πτ̃k2
]d−(p+1)

= N2
p ×

(2π
√
α′)2

8π
×
(

1
2π
√

2α′

)d−(p+1)
× . . . (4.3.34)

where Np is the Dp-brane boundary state normalisation to be determined,
and the second factor results from the propagator. Further, in the last line
there was an insertion of the Jacobian factor 2π2 obtained upon change of
variables from z = e−πτ̃ → τ̃ in Eq. (4.3.32).

Collecting factors and equating both sides, it is found that

Np =
√
π
2

2
10−d

4 (2π
√
α′)

d−4
2 −p . (4.3.35)

This intrinsic normalisation fixes the physical tension Tp/κ of the Dp-brane.
Here, κ is the gravitational coupling constant. From the NS-NS graviton-
dilaton exchange in the long-wavelength limit of the closed-string amplitude
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[77], the tension becomes Tp = 2Np. Similarly, measuring the BPS R-R charge
of the type-II branes w.r.t. a canonically normalised (p + 1)-form Ap+1, leads
one to

μp = 2
√

2Np =
√

2π(2π
√
α′)3−p (4.3.36)

4.4 Cardy states in geometric orbifolds

Cardy’s construction can be generalised further so as to produce consistent
boundary states for branes on orbifolds. In the present section, the focus will
be on geometric orbifolds that are moreover complex. The route followed
will not be different from the one that ought to be familiar by now: from the
Ishibashi[74] basis to consistent Cardy states via the modular S-matrix.

In a first approach, the discussion is restricted to branes that are pointlike
in the orbifold, while extended along the transverse directions. Branes of this
type were the subject of Section 3.3 in the open-string viewpoint. Stated oth-
erwise, Neumann boundary conditions will be taken in the transverse space-
time, Dirichlet conditions along the orbifold. Besides the untwisted closed
string sector there are now twisted sectors. Accordingly, there exist Ishibashi
states solving these gluing conditions in each of the sectors. For future refer-
ence, the corresponding Ishibashi states in a sector twisted by some element
g will be denoted symbolically as |g〉〉.

Loosely speaking, the story is similar to the one told before and it falls
apart in three pieces: a purely group-theoretical one, a bosonic and a fermionic
part.

4.4.1 Ishibashi states

Consider the worldsheet bosons first. The Ishibashi components in the g-
twisted sector are fairly similar to the one in the untwisted sector:

|g〉〉 =
n∏
l=1

exp

⎡⎣∑
κl

ᾱl−κlα̃
l−κl

κl
+
∑
κ̄l

αl−κ̄l ˜̄α
l
−κ̄l

κ̄l

⎤⎦ |0, g〉 , (4.4.1)

where modings are now shifted: κl ∈ Z + νl, while κ̄l ∈ Z − νl; exp(2π iνl) is
the eigenvalue of g ∈ Cg ≡ [g] on the complex field Xl. Further, |0, g〉 is the
twisted sector ground state. Note here that the untwisted Ishibashi state is
the only component that can emit closed strings carrying momentum in any
of the orbifold directions,

In case the orbifold group G is nonabelian, the Ishibashi states |g〉〉 are
not G-invariant. Rather, they mix with Ishibashi states in sectors twisted
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by conjugate group elements. The invariant Ishibashi state associated to a
conjugacy class Cα is in general

|α〉〉 = 1√
nα

∑
g(α)∈Cα

|g(α)〉〉 . (4.4.2)

Such states |α〉〉 are orthogonal, in the sense that they satisfy:

〈〈α|q̃ 1
2 (L0+L̃0− c

12 )|β〉〉 = δαβ χα(q̃) . (4.4.3)

As to the fermions, the story is similar. For a single twisted complex
fermion the Ishibashi state counterpart of expression Eq. (4.4.1) is found to
be

|g;σ ;η〉〉 =
n∏
l=1

exp

⎡⎣iη
∑
r>0

ψl−r ˜̄ψ
l
−r + ψ̄l−r ′ψ̃l−r ′

⎤⎦ |g;σ,η; 0〉〉 , (4.4.4)

with additional SO(2n)1 labels σ = NS,R and η = ± as in the flat space case
of Section 4.3.1. They solve the respective overlap conditions that read in
oscillators:

ψlrl = iηψ̃l−rl , (4.4.5)

where l = 1, . . . n. Again, modings rl, r ′l are appropriately shifted and depend
on the order of g(α) and the R or NS sector (rl ∈ Z+ να,l, r ′l ∈ Z − να,l in the
R sector, and an extra shift of 1/2 in the NS sector).

A proper set of Ishibashi states involves first forming the counterparts
|α,m〉〉 (m = v, o, s, c) of the flat space case in each twisted sector. Next, a G-
invariant orthogonal basis of Ishibashi states is obtained by summing twisted
Ishibashi states within each conjugacy class, as in Eq. (4.4.2).

4.4.2 S-matrix and group theory factors

The next ingredient involves the modular S-matrix. Recall some facts from
Section 3.3 that will prove relevant for the present discussion:

(a) The open string Fock space decomposes under Vir ×G as:

H osc =
⊕
K

⎛⎝∑
αK
[φαK ]⊗ RK

⎞⎠ . (4.4.6)

Moreover, the open string oscillators do not acquire shifted modings,
unlike the closed strings.
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(b) Through the G-action on Chan-Paton factors, boundary conditions get
naturally labeled by irreducible G-representations RI ; open strings with
boundary conditions I, J at the respective endpoints thus form

HIJ = PG
(
H osc
(IJ) ⊗ R∨I ⊗ RJ

)
, (4.4.7)

where PG projects onto G-invariants. The full open-string Hilbert space
is a direct sum of modules HIJ .

In terms of the orbifold chiral blocks Z(g,h) of Section 3.2 (see also Ap-
pendix B) item (a) implies that only the Z(g, e) occur in open string traces.
When combined with (b), the net outcome is that

ZIJ = TrHIJ (PG qL0− c
24 ) (4.4.8)

= 1
|G|

∑
g
ρI(g−1)ρJ(g) Z(g, e) , (4.4.9)

with ρI the character of RI .
In the chiral orbifold CFT, the natural modular matrix that appears is Sh,g′g,h′ ,

where
χhg(q) =

∑
g′,h′

Sh,g′g,h′χ
h′
g′ (q̃) . (4.4.10)

For ease of notation, set Se,hg,e = σ(g,h) as in Section 3.2.
Similarly to the discussion of type-II boundary states there, a change of ba-

sis in the space of open string traces seems to be forced upon us by Eq. (4.4.8).
The modular transform from the tree to the loop channel is accordingly mod-
ified:

χI(q) =
∑
α
SαI χα(q̃) , (4.4.11)

where a shorthand notation χα(q̃) = χeg(α)(q̃) , g(α) ∈ Cα is introduced. The
change of basis is reflected in

SαI =
nα ραI
|G| σ(e, g(α)) . (4.4.12)

Observe that Eq. (4.4.12) is nothing but a discrete Fourier transform.
In summary, we have thus obtained that:

(a) the modified matrix SαI has acquired the announced group-theoretical
factor, besides the chiral CFT contribution σ(e, g) already present.

(b) In contrast with Sh,g′g,h′ , the newly defined matrix SαI contains a row with
strictly positive only. This is essential in Cardy’s procedure since it is
precisely (the square-roots of) these that appear in the denominator of
BαI expressions.
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As in Section 4.2.3, Cardy’s construction of consistent boundary states can
then be followed literally, provided that this new S is being used. This nicely
results in

|I〉 =
∑
α

√
nα
|G| σ(e, g

(α)) ραI |α〉〉 . (4.4.13)

In terms of the boundary states |I〉, |J〉, the tree-channel expression of the
open-string one-loop amplitude, Eq. (4.4.8), reads

ZIJ(q̃) = 〈I|q̃
1
2 (L0+L̃0− c

12 )|J〉 . (4.4.14)

Summarising, up to global normalisations to be dealt with shortly, we have
derived the following

Fact 4.3

The boundary states in Eq. (4.4.13) give rise to the appropriate open
string traces Eq. (4.4.14). Moreover, the closed string twisted sector
contributions implement open-string orbifold projection after modu-
lar transformation. As such, their presence insures G-invariant open
string states.

4.4.3 Normalisations and string theory

Like in flat space, as discussed in Section 4.3.3, bosonic zero-modes largely
determine the overall normalisation of the states given in Eq. (4.4.13). Fol-
lowing a similar reasoning as there, the closed-open string duality becomes
subtle at worst in a proper account of the orbifold directions. To start with,
it is readily seen that Eq. (4.3.35) generalises to the present case

N(α)p =
√
π
2

2
10−d(α)

4 (2π
√
α′)

d(α)−4
2 −p , (4.4.15)

where d(0) = d in the untwisted sector, while in twisted sectors2 d(α�=0) =
d − 2n for Cn orbifolds. As an example, the twisted sector charges that are
the analogues of Eq. (4.3.36) are

μ(α)p = 2
√

2 2−
n
2 N(α)p =

√
2π (2π

√
α′)3−n−p . (4.4.16)

2For simplicity, we are assuming that in the twisted sector zero-modes are absent in any of
the orbifold directions, see the discussion after Eq. (4.4.1).
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How about the (physical) tensions and charges? The untwisted fields emit-
ted by the Dp-brane at the orbifold fixed point propagate in the full bulk,
particularly so along the orbifold. To have canonically normalised bulk ki-
netic terms for those fields in d − 2n dimensions, they are defined as

√
|G|

times their canonically normalised counterparts on the covering space R1,d−1.
Consequently, the tension and charge normalisations T(G)p and μ(G)p as probed
by canonically normalised fields on the orbifold space are related to the flat
space expressions, Eq. (4.3.35) and Eq. (4.3.36), through

T(G)p = Tp√
|G| , μ(G)p = μp√

|G| . (4.4.17)

Taking the factor 1/
√
|G| of Eq. (4.4.13) into account, the untwisted ten-

sion and charge are thus seen to be fractional, i.e. rational non-integer. In
contrast, no redefinition of this kind is required for twisted sector fields,
since those do not propagate in the orbifold. Further, the twisted charges as
they stand superficially fail to be real, let alone integer. An appropriate basis
change in field space cures this apparent short-coming, as will be discussed
in Section 5.2.3.



5

Bridges

In the present chapter, we shall introduce the celebrated McKay correspon-
dence. This beautiful mathematical truth that relates the geometry of sin-
gularity resolutions to representation theory of discrete groups, has been
formulated in three versions, partial proofs of which were obtained only rel-
atively recently [84, 85]. As of today, the general correspondence remains
conjectural and begs for a better understanding.

In Section 5.1.2 we present some of the mathematics lifted from Ref. [86],
hoping to supply a sufficient background to make an outline of the K-theoretic
picture. As has been known for a while by now [87], K-theory is the higher-
level1 organising principle of D-branes and their charges. By no means do
we wish to build the full mathematical toolshed there, but a minimal amount
of technical notions seems unavoidable in order to appreciate the correspon-
dence in its strongest form.

Moreover, the mathematical side of the exposition is motivated by recent
developments in the physics field [88], where D-branes build a parallel story.
The physical picture of McKay correspondence will thus constitute the second
part of the present chapter.
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(a). An (b). Ân

(c). Dn (d). D̂n

(e). E8 (f). Ê8

Figure 5.1: Non-extended and affine simply-laced Dynkin diagrams, corre-
sponding to discrete subgroups Zn ((a), (b)), Dn ((c), (d)), O ((e), (f )) of
SU(2).

5.1 McKay correspondence

5.1.1 The ingredients

In its original form, the McKay correspondence was observed as some curious
relation between the geometry of the exceptional set in blow-ups of C2/G
orbifolds on the one hand, and the representation theory of G on the other
hand [89].

Recall from Section 3.1.1 that blow-ups of C2/G, G ⊂ SU(2), produce one
of the exceptional sets in the left column of Fig. 5.1. Dynkin diagrams of
An,Dn, En Lie-algebras thus encode the geometrical data. On the other hand,
with irreducible representations RI of G forming a closed set under tensor

1Underlying K-theory, derived categories (of coherent sheaves and/or Fukaya categories)
have recently been argued to provide a more refined picture, see e.g. [68] and references
therein.
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product, Q⊗ [−] is an endomorphism of the representation ring Rep(G):

Q⊗ RI =
⊕
J
aIJRJ , (5.1.1)

in the basis of irreducible representations RI . A little exercise yields the result
that aIJ coincides with the incidence matrix of one of the diagrams in the
right column of Fig. 5.1. These are also the affine Dynkin diagrams of the
Ân, D̂n, Ên affine Lie-algebras. Dropping the ⊗-node that corresponds to the
trivial representation, the left-hand side is recovered.

Presently, the most satisfactory understanding of this miraculous cor-
respondence appeals to K-theory. For the SU(2) and SU(3) (abelian) sub-
groups the mathematical construction was first put forward in Ref. [90] resp.
Ref. [91]. An outline will be given shortly.

In the mathematics literature, McKay correspondence shows up in various
guises, the common denominator being that each establishes a link between
representation-theoretical and geometric data [92, 93, 94, 59]. For our pur-
poses, the following three versions seem to be most relevant:

Conjecture 5.1 (Weak correspondence) The Euler number χ(X) of the re-
solved space equals the number of conjugacy classes (irreducible representa-
tions) of G.

Conjecture 5.2 (Intermediate correspondence) The exceptional divisors in
a blow-up are in one-to-one correspondence with conjugacy classes of age 1.

Conjecture 5.3 (Strong correspondence) Equivariant K-theory K(Y)G on
the covering space is dual to compactly supported K-theory on the blown-up
quotient space Kc(X).

Let us place a comment here: some CFT arguments in favour of the former
two versions have been the subject of Section 3.2.1 and Section 3.2.3, respec-
tively. Briefly, this means that closed-string CFT is teaching us about de Rham
cohomology (H∗DR(X)), or the more refined Dolbeault cohomology (H∗∂̄ (X)) at
best. For one thing, recall that the Euler characteristic computes the index
of the de Rham complex. As such, the geometric data involved, the cotan-
gent bundle in essence, is intrinsically given with the manifold X itself. In
contrast, D-branes are intrinsically defined with vectorbundles E supported
on submanifolds M ⊂ X. Thus, additional structure besides the cotangent
bundle goes into the specification of D-branes. Since K-theory classes are
vectorbundles, morally speaking, it is only to be suspected that the Strong
Correspondence finds a natural realisation in the D-brane and associated
open-string picture; the relevant cohomology will turn out to be of twisted
Dolbeault type:
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(CLOSED-STRING) CFT
d-cohomology

D-BRANES
∂̄E -twisted cohomology

5.1.2 Outline of the K-theoretic picture

In the present discussion, various rings and groups will enter the stage. They
are,

(a) the representation ring Rep(G) of G, with obvious direct sum and tensor
product. Irreducible representations RI provide a convenient generating
set.

(b) the Grothendieck ring K(X) of algebraic vector bundles on X. Elements
here are equivalence classes [E] of vectorbundles on the smooth space
X, where E ∼ E + F − F ′ − F ′′ whenever these fit into a short exact
sequence

0 → F ′ → F → F ′′ → 0

(see e.g. Ref. [95]).

(c) the Grothendieck group Kc(X) of complexes of vector bundles; the com-
plexes are exact outside π−1(0), from where the superscript ’ c ’ (X π→ Y
is a blow-up).

(d) the group of coherent sheaves Coh(π−1(0)) with support on the excep-
tional set.

Further, two isomorphisms play a key rôle. The first is between Rep(G) ≈
K(X), associating irreducible representations RI to bundles RI (see [86]),
termed ‘tautological bundles’ in Ref. [96]. The fibres of RI have the same
dimensionality as the space that carries the corresponding representation.
Next, there exists an isomorphism between the last two groups in the list,
defined as follows:

Kc(X) �→ Coh(π−1(0))

[E•] �
n∑
i=0

(−1)i[Hi(E•)] ,

where [−] means: ‘take the K-theory class’. The inverse mapping takes a
sheaf on π−1(0) to (the K-class of) its locally free resolution. The isomor-
phism enables an invariable switch between coherent sheaves and complexes
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of vectorbundles. Let me remind you that the result of applying Hi(−) at the
i-th term of the resolution complex yields a coherent sheaf, and further, that
exactness outside π−1(0) means that the sheaves are supported on π−1(0).
In the whole setup, the main technical difficulty resides in proving that se-
quences like the one in Eq. (5.1.5) below are truly exact outside the exceptional
set (see Ref. [91]).

The ring (a) (and through the isomorphism, also (b)) in the list implements
representation theory manifestly. On the other hand, rings (c) and (d) have a
geometrical nature. So both sides of the correspondence seem to be present
already. There is a natural pairing that establishes the desired link:

〈−,−〉 : K(X)×Kc(X) → Z

([E], [S]) � P∗([E ⊗ S]) ; (5.1.2)

where P is the projection of π−1(0) to a point.
In Rep(G), taking tensor products with Q as in Eq. (5.1.1) induces associ-

ated bundles
RI → Q⊗RI =

⊕
J
a(1)IJ RJ. (5.1.3)

The notation is such that straight symbols are representations, while calli-
graphic ones are reserved for the corresponding vector bundles. Repeated
application and anti-symmetrisation yield likewise

∧mQ⊗RI =
⊕
J
a(m)IJ RJ . (5.1.4)

Given the {a(m)IJ }, construct the following sequences:

SI : R∨
I �→

⊕
J
a(1)IJ R∨

J �→
⊕
J
a(2)IJ R∨

J �→ . . . �→R∨
J . (5.1.5)

Appropriate differentials B can be demonstrated to exist [91], turning these
sequences into complexes. After some work, the complexes are also demon-
strated to be exact outside π−1(0). Correspondingly, they get associated to
coherent sheaves with support on the exceptional set.

The lengthy exposition of objects in the above allows a more precise for-
mulation of the correspondence:

Conjecture 5.4 (Strong McKay correspondence)

(a). Part I
The sets {RI}, and {SI} base K(X) and Kc(X), respectively. Moreover, they
are dual w.r.t. the pairing Eq. (5.1.2).
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(b). Part II
With θ : Kc(X) → K(X) the natural homomorphism, an inner product (inter-
section product) on Kc(X) is defined:

(−,−) : Kc(X)×Kc(X) → Z

(SI, SJ) � 〈θSI, SJ〉

Moreover,

(SI∨, SJ) =
n∑
m=0

(−)ma(m)IJ , (5.1.6)

where n = dimC(X).

This, then, is the proposed link between K-theory (sheaves, intersection prod-
uct) and representation theory (irrepses, a(m)). Proofs were obtained for the
cases n = 2 ([90], see also Ref. [86]), and n = 3 abelian [91] and non-abelian
orbifold groups [84]; in all cases, the so-calledG-Hilbert schemes were singled
out as resolution spaces X.

If you wish, (a) is Poincaré-duality in K-theory on non-compact spaces,
whence the nomenclature ‘intersection pairing’. In particular, the pairing
Eq. (5.1.2) is non-degenerate. As to (b), when applied to SU(2) one finds that

(SI∨, SJ) = 2δIJ − a(1)IJ (5.1.7)

while for SU(3),
(SI∨, SJ) = a(2)IJ − a(1)IJ (5.1.8)

is obtained.

5.2 Dévissage of the correspondence

5.2.1 D-brane realisation of McKay

After this mathematical detour, let us next try and approach the above corre-
spondence in a more physically-inspired fashion. To this end, we recall that
the Chern character is a map from K-theory to rational cohomology:

Ch : K(X)→ H∗(X,Q) . (5.2.1)

In terms of Ch, the Hirzebruch-Riemann-Roch theorem asserts that

(E, F) =
∫
X
Ch(E∨ ⊗ F) Td(X). (5.2.2)
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This number is the index of the ∂̄E−F -operator acting in the twisted complex
Ω0,q(X)⊗E∨⊗F . In other words, it counts the number of holomorphic maps.
The Todd class Td(X) coincides with the Â-roof genus for c1 = 0 manifolds
[88]. Then, Eq. (5.2.2) becomes the index of the twisted Dirac operator /DE−F
acting in the twisted spin-complex. In plain language, it counts the net num-
ber of chiral fermions coupled to gauge bundles E∨ ⊗ F . Note that the above
holds for smooth bundles (K-theory) on smooth manifolds X. When applied
to RI ∈ K(X) the latter classes (bundles) are naturally associated to D2n-
branes, that is, branes wrapping the whole of X.

The a(m)IJ emerge quite naturally in the smooth (large-volume) Calabi-Yau
phase. From the decomposition of the spin-bundle, Spin+ ≈ ⊕

qΩ(0,q)(X),
one finds that

Spin+ ≈
⊕
q
ΛqQ . (5.2.3)

From this, the twisted Dirac index readily follows:

TrIJ(Γ ) =
n∑
q=0

(−)qa(q)IJ , (5.2.4)

where the trace is taken over the massless fermion ground states, and Γ is
the analog of the four-dimensional γ5 for the internal X-space; it causes the
crucial (−)q factor on the rhs of Eq. (5.2.4). In all, in the smooth phase, the
twisted Dirac-index is observed to realise Part II in the correspondence.

Further, notice that IIJ ≡ (RI ,RJ), as given by Eq. (5.2.2), is (anti-)sym-
metric for even (odd) dimensional X when applied to CY-spaces X. This ob-
servation led the authors of Ref. [97] to the following conjecture:

Conjecture 5.5 (Douglas–Fiol) On CY-threefolds, IIJ describes intersections
of three-cycles on the mirror Calabi-Yau space.

If true, this conjecture would establish a direct correspondence between purely
geometrical data and group theory.

5.2.2 Massless open strings and the correspondence

Let us next move on to the orbifold limit. There, one sees the natural emer-
gence of fractional D-branes SI , say, and the associated gauge theories of
Section 3.3. Besides those, D2n-branes RI extended along the orbifold will
also enter the stage. Of particular relevance are the massless fermions result-
ing from open 2n− 0 and 0− 0 strings. In the former case, a computation of
the Dirac index establishes that 〈RI, SJ〉 = δJI , i.e. {RI} and {SI} are ‘dual’. On
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the other hand, the a(m)IJ show up in the Dirac index for 0−0 strings. Similarly
to the discussion above, the key rôle is played by the spin-bundle: spinors on
the covering space decompose into G-modules as

Σ =
⊕
q
ΛqQ . (5.2.5)

As such, the net number of chiral fermionic open strings with Chan-Paton
spaces SI and SJ2, is computed straightaway, with the result

Ind /DI−J = TrR,IJ((−)F) ; (5.2.6)

=
n∑
q=0

(−)qa(q)IJ . (5.2.7)

The operator (−)F in the first line is the worldsheet counterpart of Γ in
Eq. (5.2.4), and the second line is the orbifold D-brane realisation of Eq. (5.1.6).

The next step would then be to continue the results to the smooth phase,
whereby RI get identified with appropriate bundles RI . Notice that all com-
puted quantities involve chiral objects that cannot disappear from the spec-
trum. Particularly so, the relation between RI and SI is expected to go over
unchanged if the blow-up is performed. This makes an identification of the
SI possible in terms of coherent sheaves in large volume.

5.2.3 A final visit to ADE orbifolds: fractional branes as wrapped
branes

In the present section the boundary states constructed following Cardy’s pre-
scription will be demonstrated to nicely contend with the geometric interpre-
tation of D-branes wrapped around exceptional cycles. It is good to keep in
mind that all of this section will take place in the orbifold limit, i.e., all cycles
have zero-volume. Recall what we have obtained in the foregoing chapters:
on the one hand, there are twisted sector RR-potentials, naturally labelled by
non-trivial conjugacy classes; on the other hand, there are boundary states,
that are in one-to-one correspondence with irreducible representations. More-
over, evidence from open string considerations suggest that the associated
Dp-branes are honest D(p + 2)-branes wrapped around exceptional cycles of
the ALE. The objective here is to present an alternative argument involving
closed strings only. In passing, this may be viewed as a consistency check of
the boundary state coefficients.

2For simplicity of notation, the representation is identified with its carrier vector space.
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Let us start with the geometry. There, the intersection form is defined as

Iij :=# (Ci · Cj) , [Ci], [Cj] ∈ H2(X,Z) . (5.2.8)

Alternatively, it is expressed as Iij =
∫
X ωi ∧ωj, where [ωi] is Poincaré-dual

to [Ci] :
∫
Ci η =

∫
X η∧ωi, for all closed two-forms η. Apart fromωi, it will be

convenient to likewise defineωi := (I−1)ijωj , such that
∫
Ci ω

j = δji . In short,
Einstein summation convention will be assumed below, and Iij will serve as a
metric.

Now to the low-energy effective field theory. In a geometric Kaluza–Klein-
reduction3, the RR-(p + 3)-form has an expansion into harmonic two-forms
on X:

Â(p+3) = Ai
(p+1) ∧ωi . (5.2.9)

Thirdly, the boundary states |i〉 come into play. Mind the notation: i
runs over non-trivial irreducible representations only, as opposed to I. The
objective is now to associate |i〉 to a D-brane Bi, such that:

(a) the associated brane Bi wraps the cycle Ci ;

(b) the brane has a WZ-coupling to the (canonically normalised) twisted sec-
tor A(α)(p+1) as dictated from the boundary state.

Condition (a) is the assumption that∫
D(p+2);i

Â =
∫
M×Ci

Â . (5.2.10)

In other words, this coupling reduces to
∫
MA(p+1),i, where M is transverse to

the orbifold.
Condition (b) requires a WZ-coupling

∑
α μiα

∫
X A

α
(p+1). As such, the change

of basis relating geometric to twisted-sector fields, assumes the form

A(p+1),i =
∑
α
μiαAα(p+1) ; μiα =

√
nα

|G|σ(e, g
(α)) ρi(g(α)) , (5.2.11)

as follows from Eq. (4.4.13).

3More rigorously, we should write the decomposition as

Â(p+3) = p∗R5,1Ai(p+1) ∧ p∗Xωi ,

using the pullbacks induced by projections of R5,1 ×X onto the first and second factors. How-
ever, this notation is obviously clumsy and will therefore be suppressed.
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It is an elementary exercise to derive that∫
dÂ∧∗ dÂ =

∫
M
dĀ(p+1),i ∧∗ dAi

(p+1) ,

= μ̄αi(I−1)ijμjβ
∫
M
dĀα(p+1) ∧∗ dA

β
(p+1) .

With equally straightforward manipulations4, one finds that the coupling ma-
trix in the second line reduces to δαβ, provided μ assumes the form given in
Eq. (5.2.11). More precisely, starting from a canonical kinetic term for Â in
d = 10, the boundary state coefficients conspire to yield a canonical kinetic
term likewise for the twisted sector (KK-reduced) RR-fields. That the kinetic
coupling be diagonal in such fields is a minimal requirement, since twisted
sectors are mutually orthogonal! In summary, the Cardy states survive a first
consistency check, given the assumption that they are associated to branes
wrapped on exceptional cycles. The non-triviality here resides in the con-
sistent combination of two separate pieces of information: boundary state
coefficients, obtained from Cardy, on the one hand, and geometrical data, the
intersection numbers of the exceptional set, on the other.

Besides the above, the |i〉-associated D-brane also couples to the untwisted
sector A(p+1) RR-field, as encoded in the WZ-coupling

μp+2

∫
M×Ci

A(p+1) ∧
[
2πα′F + B] , (5.2.12)

where the assumption about the wrapping was plugged in once more. From
the fact that the first Chern class,

∫
Ci

F
2π = ki ∈ Z, is quantised, Eq. (5.2.12) is

rewritten as

μp+2

∫
M
A(p+1)

[
4π2α′ki + Bi

]
, (5.2.13)

with a B-field B = ∑
i Biωi, i.e.

∫
Ci ωj = Bjδij . Consistency with the boundary

state untwisted sector coefficient is established, provided

Bi =
μp
μp+2

di
|G| ; ni = 0 . (5.2.14)

Finally, let us discuss the brane associated to the trivial irrep. Repeating
the reasoning above, one is led to conclude that it corresponds to a brane

4In fact, this entails showing that∑
i
ρ̄i(g(α))ρi(g(β)) =

|G|
nασ(e, g(α))

δαβ .

A proof of this property relies on the fact that ρI are eigenvectors of the extended Cartan
matrix, see also Ref. [1].
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wrapping C0 ≡ −
∑
i diCi. From here, the untwisted fractional charge is cor-

rectly accounted for by setting n0 = 1, i.e., the associated brane carries a
non-trivial bundle supported on C0. Only then, one has

B0 = −
∑
i
Bi =

μp
μp+2

1− |G|
|G| , (5.2.15)

adding up correctly with the first Chern class contribution to the untwisted
charge.

The results obtained here are summarised as follows:

(a) The coefficients obtained from Cardy are not in disagreement with the
assumption that the associated states are fractional branes wrapping
the exceptional cycles.

(b) With the same assumption, the Cardy states constitute a piece of evi-
dence for quantised B-flux on the vanishing cycles.

(c) The charges of a regular representation D-brane cannot be distinguished
from those of a bulk brane: the fractional untwisted charges add up to
a unit charge, whereas the twisted sector charges vanish: such a brane
can consistently be pulled off the singularity.
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Discrete torsion

In this chapter, aspects of discrete torsion are discussed. Systems of phases
may yield different modular invariant closed-string partition functions. Con-
sistency demands that such sets of phase factors be organised by the group
cohomology group H2(G;U(1)). This is the basic content of Section 6.1.

Next, in Section 6.2 this same group is shown to be related to the modi-
fied open string orbifold projection: the orbifold group is now realised on the
Chan–Paton factors via projective representations, as opposed to the vector
representations in the no-torsion case. For self-containedness, a short digres-
sion on projective representations is added. The BPS D-branes that result
from this prescription have been termed ’projective fractional branes’ [98].

Section 6.2 then discusses boundary states for these projective fractional
branes: they are demonstrated to follow from Cardy’s recipe. As a result, the
states actually prove that the associated branes induce projective Chan–Paton
representations. This purely algebraic proof is considerably simpler than the
original motivation in Ref. [99].

Finally, the CFT-geometry correspondence needs reviewing in this new
light. The example C3/Z6 × Z6 is studied in detail, and serves as an illus-
tration that a modified correspondence persists.

6.1 Closed strings

6.1.1 Modular invariance with phases

Modular invariance alone does not fix the closed string partition function
uniquely. The left-over ambiguity involves an assignment ε(g,h) ∈ U(1) of
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phase factors to every pair (g,h) of commuting elements. With those factors,
the torus vacuum amplitude becomes a weighted sum:

Z =
∑
g,h
ε(g,h)

∣∣∣∣g h

∣∣∣∣2

, (6.1.1)

where a left-right symmetric action of G was assumed. Not any assignment
ε will result in a consistent expression, however. This consistency issue was
addressed in Ref. [100], yielding the following conditions: ε : G × G → U(1)
should be such that

(a) they are well-defined on modular orbits, i.e., orbits of PSL(2,Z), in the
sense that

ε(g,h) = ε(gahb, gchd) , ∀
(
a b
c d

)
∈ PSL(2,Z) ;

this follows from modular invariance on the torus.

(b) They furnish a representation of Nk ⊂ G below; further, they are anti-
symmetric, and normalised. In formulas, these requirements boil down
to

ε(gh, k) = ε(g, k)ε(h, k) ; (6.1.2)

ε(g,h) = ε(h,g)−1 ; (6.1.3)

ε(g, g) = 1 , (6.1.4)

respectively. These conditions are in fact a rewriting of the ones that
ensure higher-loop modular invariance and factorisation (see Ref. [100]).

What about solutions of conditions Eq. (6.1.2) - Eq. (6.1.4)? As it turns
out, the group cohomology H2(G;U(1)) provides a set of them [100]. The
required group cohomology is defined in terms of 2-cochains α : G×G → U(1)
and 1-cochains β : G → U(1), with coboundary operators1 (in multiplicative
notation)

δ3α(g,h, k) := α(g,hk)α(h, k)
α(gh, k)α(g,h)

; (6.1.5)

δ2β(g,h) := β(g)β(h)
β(gh)

. (6.1.6)

1A note on notation: δn : Cn−1(G;U(1)) → Cn(G;U(1)); e.g., δ3α(g,h, k) := (δ3α)(g, h, k),
i.e., the coboundary yields a 3-cochain which is afterwards evaluated in (g, h, k).
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It is easily checked that δ3δ2 = 1, such that the δ-cohomology is meaningful:

H2(G;U(1)) ≡ kerδ3

imδ2
. (6.1.7)

In terms of a representative α of some class in H2(G;U(1)) the discrete tor-
sion phases are defined by ε(g,h) = α(g,h)α(h,g)−1. Each of the consis-
tency requirements is readily verified to be met.

The foregoing analysis thus reveals the following

Fact 6.1

G-orbifold theories with discrete torsion are classified by H2(G;U(1)).

A modified spectrum

The physical content of the torus partition function Eq. (6.1.1) in the presence
of discrete torsion phases is an altered closed string spectrum. In particular,
the ground states in twisted sectors are subject to a modified projection,
compared to the no-torsion orbifolds, i.e.,

g · |h〉 = ε(g,h)|h〉 . (6.1.8)

Since the phases ε(g,h) form a one-dimensional representation, say Rε of Ng ,
the g-twisted sector full CFT Hilbert space now decomposes as

Hg = ⊕[φgα]× [φ̃gβ] (Rα ⊗ Rβ ⊗ Rε) (6.1.9)

where the group theory factor results from the chiral (α) and anti-chiral
(β) primary transformation properties, and the modified G-realisation on the
ground-states (ε). Orbifold projection now amounts to keeping only invari-
ants in Rα⊗Rβ⊗Rε, resulting in a modified closed string spectrum. Note that
the case Rε=0 reduces to the orbifold without torsion.

6.1.2 Example 6.1

As was already exemplified on p. 75, a short-cut allows for a quick count
of massless twisted-sector RR-states. Recall that given an action of G on the
target space, encoded in a representation Q, the relevant data consist of (a)
the age s, or equivalently, the fermion number shift associated to g, and (b)
the fixed setMg of g. In the desingularisation, the g-twisted sector then adds

to the cohomology
[
H∗+s,∗+s(Mg)

]G
.
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An instructive example is G = Z6 × Z6, where H2(G;U(1)) = Z6. Further,
the defining representation Q on C3 sends the generators g1,2 of G into diag-
onal matrices:

g1
Q→ Diag(ω,ω−1,1) ; g2

Q→ Diag(1,ω,ω−1) ; (6.1.10)

Now G has three distinct Z6 subgroups, generated by g1, g2, g1g2, respec-
tively, that each leave a complex line fixed. The remaining twenty elements
leave a codimension three set fixed. As to the ages, ten out of these twenty
have s = 2, while any other element in G \ {e} has s = 1. As a final ingredient,
the cohomology of the fixed line yields a Hodge diamond

h0,0

h1,0 h0,1

h1,1
=

1
1 1

1
(6.1.11)

It is a simple exercise to verify that the codimension-2 (resp. -3) twisted
sectors add to the cohomology as summarised in Table 6.1. A note on the
terminology: the ‘order’ of the torsion refers to its order inside the cyclic
H2(G;U(1)) = Z6; ‘minimal’ is attributed to the generator of the latter.

h1,1

h2,1 h1,2

h2,2
Codimension 2 Codimension 3

(
no

torsion
) 15∗

0 0
15

10
0 0

10(
minimal
torsion

) 0
15 15

0

0
0 0

0(torsion of
order 3

) 3∗

12 12
3

0
0 0

0(torsion of
order 2

) 6∗

9 9
6

1
0 0

1

Table 6.1: Contributions to the cohomology of the (partially) desingularised
space. Entries with ∗ do not have compact support.
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6.2 Open strings and D-branes

Before reconsidering the issue of D-branes in the presence of non-trivial dis-
crete torsion, it will prove worthwile to insert an interlude on projective rep-
resentations (of finite groups, basically).

Projective representations

An n-dimensional projective representation of a group G is a map R : G →
GL(n,C) such that R(gh) = α(g,h)R(g)R(h),∀g,h ∈ G. The phases in-
volved form a so-called factor system, following from an assignment α :
G×G → U(1). Evidently, not any assignment will do. Associativity requires

α(gh, k)α(g,h) = α(g,hk)α(h, k) . (6.2.1)

When viewed as a condition on a 2-cochain, associativity exactly translates
into δ3α = 1, hence αmust in fact be a cocycle. Further, the rescaling R(g) →
β(g)R(g) induces α → α.δ2β, i.e. it adds a coboundary. The newly obtained
factor system is said to be equivalent to the given one. Inequivalent factor
systems are thus in one-to-one correspondence with cohomology classes in
H2(G;U(1)).

Given a representative of such a class, i.e. a factor system α, one should
wonder about inequivalent projective representations realising that α. The
notion of equivalence is taken over unmodified from the context of linear
(vector, true) representations; specifically, equivalence is induced by change
of basis in the carrier vector space. Let me state a few facts without proof
here (see, e.g., Ref. [101] and references there);

(a) The number of inequivalent projective representations equals the num-
ber of α-regular elements in G. The latter are g such that α(g,h) =
α(h,g),∀h ∈ Ng .

(b) As to the projective characters, they are no longer class functions, i.e.
ρ̌I(g) need not equal ρ̌I(hgh−1). Rather,

ρ̌I(hgh−1) = α(h−1, h)α(g, e)
α(h,g)α(hg,h−1)

ρ̌I(g) . (6.2.2)

On the other hand, they remain orthogonal, in the sense that

1
|G|

∑
g
ρ̌∗I (g)ρ̌J(g) = δIJ . (6.2.3)

From this equation, the fact that
∑
I d2
I = |G| is immediate, as with linear

representations.
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(c) There always exists some group G̃, a covering group (= representation
group), defined by the sequence

1 → K ι→ G̃ π→ G → 1 , (6.2.4)

which is split-exact, i.e., there exists a section G̃ σ← G acting as a right-
inverse to π . Moreover, this extension of G by K is central, meaning that
the ι(K) sits in the centre of G̃. The linear representations of G̃ then de-
scend to projective or linear representations of G. Equivalently, any rep-
resentation of G, be it projective or not, lifts to a linear representation
of the representation group of G. This property has been worked out in
Ref. [102], and proves useful in practical calculations. In the discussion
of boundary states, this point of view will become of some relevance as
well. Perhaps the simplest example here is

1 → Z2 → D4 → D4 → 1 , (6.2.5)

expressing the binary dihedral as a double covering of the ordinary di-
hedral group.

(d) The ordinary representation ring Rep0(G) of G is enlarged to Rep∗(G).
The latter now contains linear as well as projective representations. The
underlying H2(G;U(1)) structure is apparent from the tensor product

[−]⊗ [−] : Repα(G)× Repβ(G) �→ Repα·β(G)

D-branes I – Aspects of the gauge theory

Let us now turn back to D-branes. Since H2(G;U(1)) governs both the dis-
crete torsion phases and projective representations, it seems temptive to con-
clude the following

Fact 6.2

D-branes in orbifolds with discrete torsion associated with [α] ∈
H2(G;U(1)) give rise to Chan-Paton factors carrying representations
with a factor system α.

This proposal was put forward in Ref. [99] and it was verified to be consistent
for abelian orbifolds, meaning that open and closed string interactions figure
in a single coherent picture. Moreover, an important implicit assumption
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there was that the D-branes were pointlike2 along the orbifold directions. An
alternative proof, involving boundary state considerations, will be presented
shortly; it has the advantage of encompassing the technical obstructions to
non-abelian generalisation of the evidence given in Ref. [99].

Given this piece of information, D-branes in discrete torsion orbifolds can
be defined along the lines of Section 3.3. Let the linear defining representa-
tion on the string coordinates be Q ↩ 3.3 Further, for a choice of discrete
torsion associated to [α] ∈ H2(G;U(1)), define the generalised regular rep-
resentation on the Chan-Paton factor as

R(α)regular = ⊕IdI Ř
(α)
I , (6.2.6)

where dI = dimRI , and Ř(α)I realise the cocycle α. The open string spectrum
is then found upon projection, i.e.(

Q⊗R(α)regular ⊗R
∗,(α)
regular

)G
. (6.2.7)

Next, the interactions, in particular, the superpotential, are modified when
discrete torsion is non-trivial:

WN=1 = Tr(Zi[Zj, Zk])αεijk , (6.2.8)

where the subscript denotes α-twisted products. Zi are N = 1, d = 4 chiral
superfields (or their appropriate dimensional reductions) that parametrise the
space transverse to the D-brane, that is, the orbifold covering space.

Then, the classical equations of motion follow from the superpotential
Eq. (6.2.8) as usual, and determine the tree-level moduli space. For the cases
Z2 × Z2,Z3 × Z3, this program was carried out in detail in Ref. [97].

It is instructive to take up Example 6.1 again. The defining (linear) repre-
sentation of Eq. (6.1.10) is more succinctly written as:

Q = R1 × R0 ⊕ R5 × R1 ⊕ R0 × R5 . (6.2.9)

As pointed out previously, H2(G;U(1)) = Z6. Denote the cocycle-representa-
tive by α, and its order by nα. Given nα, there are then |G|/n2

α inequivalent
projective irrepses Ř(α)I of dimension nα. More explicitly, with minimal tor-
sion, i.e., nα = 6, the single projective representation Ř(1) is given by

g1 →

⎛⎜⎜⎜⎜⎜⎝
0 1 0

0 1
...

. . .
1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ ; g2 →

⎛⎜⎜⎜⎜⎝
1
ω

. . .
ω5

⎞⎟⎟⎟⎟⎠ ; (6.2.10)

2Or (even,even,even)-dimensional in the notation of Ref. [98].
3In the present section only CY threefolds will be considered.
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In the non-minimal case, e.g., nα = 3, we rather have four Ř(2)j,k

g1 →ωj
⎛⎜⎝ 0 1 0

0 0 1
1 0 0

⎞⎟⎠ ; g2 →ωk
⎛⎜⎝ 1

ω2

ω4

⎞⎟⎠ ; (6.2.11)

where j, k = 0,1, or with nα = 2, the nine irrepses Ř(3)j,k :

g1 →ωj
(

0 1
0 1

)
; g2 →ωk

(
1
ω3

)
; (6.2.12)

If now a regular projective representation, CαG = ⊕nαŘ(α)I is put trans-
verse to the origin, the gauge theory spectrum is encoded in the quivers of
Fig. 6.1.

Figure 6.1: Quivers encoding the massless open-string spectrum in Z6 × Z6

orbifolds with minimal torsion (l.) and torsion of order 2 (r.). See the main
text for further details regarding the Figure on the right.

As in Section 3.3, p. 85, vertices are gauge groups, and oriented edges
stand for chiral d = 4, N = 1 multiplets. For the non-minimal order two
torsion case, a unit cell of a periodic array is displayed. Furthermore, the
order three torsion comes with a similar quiver consisting of a unit cell with
9 vertices.
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Moreover, an analysis of the dynamics, similar to the one of Ref. [97] (see
also Ref. [103]) reveals a moduli space M displaying quite some structure.
A regular representation probe brane is free to move anywhere on the 3d
orbifold; this yields the conventional 3–dimensional branch of M, describing
the position of the probe brane when it moves as a coherent unit along the
orbifold. However, lower-dimensional branches open up equally well, since
subrepresentation branes are allowed to explore e.g., the g1- and g2- fixed
lines independently. For a complete account of the branches, the reader is
referred to Ref. [103].

If only a subrepresentation, not necessarily irreducible, is put, the free-
dom to move away from the singularity is reduced. In the extreme case of a
single projective irrep brane, the Higgs branch collapses to a point. It takes
nα identical branes for a non-trivial branch to open up. As such, projective
branes have a (possibly restricted) freedom to move in bunches of nα.

Physically, this circumstance is interpreted as the single branes being
stuck at the fixed point. That they can move away unless a sufficient number
of copies are placed is reminiscent of them carrying a twist charge, similar
to the no-torsion case. However, the distinctive feature here is that all copies
must be identical, in contrast to the familiar situation: the twist charge has
become discrete rather than additive, i.e., it is only defined modulo nα. Ac-
cordingly, there is no corresponding RR gauge field4.

In all, the open string analysis reveals the existence of a discrete conserved
quantum number, that is defined modulo nα. This was the main motivation
for the present discussion.

D-branes II – Boundary states

Finally, let me come to the boundary states corresponding to the aforemen-
tioned D-branes. As usual by now, one starts the construction with the
Ishibashi states. In the present situation, these are no different from those in
the orbifold without torsion. As to the coefficients BgI that perform the trans-
form to the Cardy basis, they are obtained from Eq. (4.4.13) upon replacing
ρI → ρ̌(α)I . A minor subtlety hides in that projective characters are no longer
class functions on G. Therefore, twisted sector Ishibashi components come
labelled by individual elements, rather than conjugacy classes. Carrying out
these steps, you will discover that the projective fractional brane states are

4As a matter of fact, it may well turn out to be the case that there exist multiple discrete
charges. A first possibility, investigated in Ref. [102], is that H2(G;U(1)) has more than one
generator; a second option, though, seems to reside in turning on non-minimal discrete torsion,
but would require further analysis.
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given by

|I〉 =
∑
g

√
σ(e, g)
|G| ρ̌(α)I (g) |g〉〉 . (6.2.13)

Discrete torsion removes some of the twisted sector Ishibashi states from
the physical orbifold projected spectrum. How then is this to be reconciled
with Eq. (6.2.13)? The answer is simple and short: from Eq. (6.2.2) and asso-
ciativity, Eq. (6.1.2), it follows that

ρ̌(hgh−1) = ε(g,h) ρ̌(g) , (6.2.14)

for commuting g,h. Whence the conclusion

∃h ∈ Ng : ε(h,g) �= 1 ⇒ ρ̌(g) = 0 (6.2.15)

follows. As such, the only Ishibashi components that contribute to the pro-
jective Cardy states in Eq. (6.2.13) are precisely those labelled by α-regular
elements. Stated differently, unphysical components are projected out by
construction. This provides an easy and direct piece of evidence for the con-
nection between projective representation Chan-Paton factors and discrete
torsion.

From Eq. (6.2.13) observe that the left-hand side consists of objects la-
belled by projective irrepses, while on the right-hand side only α-regular con-
jugacy classes contribute. As will be argued in a moment, these are in one-
to-one correspondence; hence we must conclude that all the additive twisted
sector charges are carried by one of the branes in Eq. (6.2.13).

How about the discrete charges, then? It must not come as a surprise that
those cannot possibly be detected by boundary state methods. A heuristic
explanation is that they generate the open string spectrum, nothing more,
nothing less. In particular, they have no means to tell you about the open
string interactions; hitherto, the latter have been the single indication of the
existence of non-trivial discrete charges.

6.3 Geometrical picture

Due to the modified projection in the closed string sector, the correspondence
geometry-CFT seems to have gone lost. It is the purpose of the present section
to shed some light on a modified correspondence.
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6.3.1 Geometry-CFT correspondence

First, the massless RR-states that are being kept are in one-to-one correspon-
dence with so-called α-regular conjugacy classes. These are the ordinary con-
jugacy classes containing group elements g such that ε(g,h) = 1,∀h ∈ Ng .
From the property that ε furnish Ng representations, this notion is seen to
be well-defined on conjugacy classes. Therefore, the RR-twisted sector CFT
marginal deformations are counted by (#α-regular conjugacy classes −1),
where the −1 subtraction accounts for the untwisted sector.

On the other hand, the number of inequivalent projective representations
realising a cocycle α also equals the number of α-regular conjugacy classes.
Therefore, there is a numerical match:

# twisted sector RR-forms � (# irrepses) - 1

Since D-branes are labelled by (projective) irreducible representations, the
twisted sector additive charges, i.e. those that couple to a gauge-potential, can
distinguish between them, in complete analogy to the case without torsion.

It is beyond doubt that a geometric interpretation of the projective branes
in terms of wrapped higher-dimensional objects would make the correspon-
dence more direct. Before working out some details in a specific instance,
recall the following facts:

(a) Theorem 6.1 (Schlessinger [104]) Cm/G-singularities of codimension at
least three are rigid. This means that they admit no non-trivial deforma-
tions.

(b) Blow-up adds to even cohomology, whereas deformation adds to middle
cohomology.

6.3.2 The example revisited

Take up the example C3/(Z6×Z6) again. From the middle column in Table 6.1,
it is seen that sectors twisted by elements leaving a codimension-2 singular
fixed set can contribute to both middle and even cohomology, depending on
the type of discrete torsion turned on. This is easily understood in terms of
the local geometry. To be more precise, the fixed-line orbifold geometry is lo-
cally modelled by C×C2/Z6, i.e., a complex plane times an A5-singularity (see
Section 3.1.2). From the analysis there, it is known that such singularities can
be blown-up with no torsion present, with a net yield of 5 exceptional curves.
The Poincaré-duals of each of these adds to H2,2, whereas the Poincaré-duals
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of the type (C)×(curve) do so5 to H1,1. At the other extreme, A-type singu-
larities can be deformed, as discussed likewise in Section 3.1.2, yielding an
equal amount of homology cycles. Taking the action of g2 into account, one
is led to the conclusion that the duals of such curves add to H2,1 ⊕ H1,2, as
appropriate for deformations. From Table 6.1, each of these scenarioes is
realised, either without torsion or with minimal torsion. Besides these, the
Table suggests two intermediate cases, with non-minimal torsion turned on.
Under the mild assumption that each of these desingularisations smoothes
out the singularity completely, this example illustrates once more the fact al-
ready argued in Ref. [105], namely,

Fact 6.3

Codimension-2 (non-isolated) singularities can be removed completely
by deformation and/or resolution.

Now on to the codimension-3 singular point (the origin). Schlessinger’s the-
orem shows that it cannot be undone by deformations, so blow-up is what
one is left over with. However, even though geometrically speaking blow-up
is a valid procedure, discrete torsion removes the required marginal defor-
mations from the CFT. Stated otherwise, the necessary blowing-up modes are
not (all) present in the string theory. Hence,

Fact 6.4

Codimension-3 (isolated) singularities can at most be partially undone
by resolution in string theory.

Alternatively, this says that the discrete torsion orbifold is totally discon-
nected from its smooth (large-volume) phase.

In fact, the above features can be illustrated by toric diagrams. Following
the rules of Section 3.2.3, the fans in Fig. 6.2 are found in a straightforward
manner. Let us suffice with the observation that discrete torsion indeed re-
moves available blow-up cycles (i.e. nodes corresponding to divisors). If the
count is performed, agreement will be found between the toric fans and the
results in Table 6.1.

5If only compactly-supported cohomology is to be taken into account, there are no contri-
butions to H1,1
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[α] = 0 6[α] = 0

3[α] = 0 2[α] = 0

Figure 6.2: The 4 toric Z6 × Z6 fans with the available blow-up cycles. The
number of such cycles increases with decreasing order of the torsion.

As to the D-branes, the picture that emerges is that they do indeed cor-
respond to branes wrapping compact cycles that result from the blow-ups6.
Equivalently, the following is true:

Fact 6.5

Projective fractional branes couple to RR-potentials coming from KK-
reduction on compactly-supported exceptional cohomology.

6D-branes that are related to non-compact cycles have been explored in Refs [106, 98]. Two
distinctive features are: 1. they are not BPS, and 2. they are not point-like but extended in
some of the orbifold directions.
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6.3.3 Torsion in homology ?

Besides possible additive charges, projective branes also carry discrete charges,
as suggested by the open string picture. Can these be accounted for as well
in a geometric framework? This issue was explored only quite recently [103]
and we shall have very little to say here. Suffice it to point out the main ideas
and a (hitherto) unanswered question.

(a) Fact 1. From Ref. [87] it has been known that D-brane charges are en-
coded in the K-theory of the space. This idea was pursued by the authors
of [103], and H2(G;U(1)) was argued to be a torsion subgroup of the
K-homology. In this sense, the discrete torsion can be accomodated in a
geometric context.

(b) Fact 2. When this result is mapped to integral homology, the fact
whether this torsion subgroup is to be identified as a two- or four-
cycle is obscure. This makes the situation still rather unsatisfactory
at present. On the other hand, it is known that the torsion in K-theory
may be different from that in homology. One could therefore question
the quest for a purely singular-homological interpretation.

(c) Question. Rather than in K-theory (i.e., smooth vector bundles), is there
room for an interpretation in terms of sheaves (singular bundles) and/or
complexes of bundles, or derived categories, as in Chapter 5? In other
words, does a modified version of McKay correspondence survive if dis-
crete torsion is turned on?



A

Elements of sheaf theory

Contrary to vector bundles, sheaves seem to have resisted wide acceptance by
string theorists so far. Most often, one can do without them, and to introduce
them would merely seem like a fancy rephrasing. However, in Chapter 5
coherent sheaves played a key rôle. The main objective of this section is
to provide the reader with some intuition of sheaves, in a way to convince
him/her of their power that takes them beyond fanciness. We learned about
sheaves mainly from Refs. [107, 108, 109], whereby Ref. [57] is recommended
for background material on ring and module theory. Lack of space forces us
to be brief, but nonetheless we hope to give a flavour of the subject.

In essence, sheaves on a manifold (variety, scheme) X consist of a covering
∪αUα of X, equipped with an assignment F of sets F(U) to each open set.
Typically, the sets F(U) are groups, rings or modules. Further, for any pair of
opens U,V , such that U ⊂ V , there are maps ρVU taking F(U) intoF(V) with a
number of conditions making F into a sensible object. Typically, these maps
will be homomorphisms of groups, rings, and modules, whence structure-
preserving morphisms. 1

A.1 Structure sheaves

A first important class of sheaves are so-called structure sheaves OX . They
provide an underlying space X with rings encoding its structure. Depending

1Actually, the F introduced are only pre-sheaves. To make a sheaf, F has to obey patching
conditions, essentially stating that F(X)-valued objects are completely determined by local
data F(Uα). See Ref. [109]
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on one’s needs, O(U) are rings of continuous functions (topology), C∞ func-
tions (differential geometry), rational functions on X that are regular on U
(algebraic geometry).

As an example, consider the sheaf OPN(n) over (complex) projective N-
space. It is the sheaf of homogeneous degree n rational functions:

OPN(n)(U) =
{
f
g
|deg(f ) = d+n; deg(g) = d; g(x) �= 0∀x ∈ U

}
.

Equivalently, it is the n-th tensor power of OPN (1). Also, for an algebraic
subvariety X of PN , i.e. X is a so-called projective variety, the structure sheaf
OX is the sheaf of regular (rational) functions as already explained. Consider
next

OX(1) := OX ⊗OPN OPN(1) . (A.1.1)

from which new sheaves are defined through OX(n) := ⊗nOX(1).

A.2 Sheaf homomorphisms, (co)kernels and stalks

Preliminary to the exploration of the differences and resemblances between
vector bundles and sheaves of modules (see below), is a short digression on
maps between sheaves. A sheaf map consists of a system of homomorphisms
fU : E(U) → F(U), that is moreover compatible with the restriction maps.
The kernel, Ker f , is the sheaf built from the local sections Ker fU ; the cok-
ernel sheaf, Cok f , is somewhat subtler, since generically the naive process
only yields a presheaf (see e.g. Ref. [107]).

Next, let me discuss the stalk Fp at a point p. Given two opens U,U ′

containing p, two sections σU,σU ′ are identified whenever they have some
open V in common where they coincide. The set of equivalence classes (i.e.,
the set of the germs of local sections at p) is Fp . Now here is why stalks are
any good: a sheaf map f is called injective, resp. surjective, if the property
holds at the level of stalks. In other words, given

E(U) fU→ F(U) , (A.2.1)

the homomorphism f may be injective, resp. surjective, even though fU fails
to meet the requirement for some U . This weaker notion turns out to be pre-
cisely right, i.e., not too rigid nor completely empty, in further developments
of the theory. Exactness of sequences of sheaves is defined in a similar spirit,
that is, through the notion of stalks.

Let us illustrate these points with an example: consider a hypersurface
(Y : F = 0) defined as the zero locus of some polynomial F inside an (affine)
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variety X. The structure sheaf OY may then be defined in terms of OX , by
demanding that the sequence

0→ OX F→ OX → OY → 0 (A.2.2)

be exact; the indicated map is multiplication by F . The stalks OX,p can be
characterised as indicated above, but in this concrete case, they are equiva-
lently defined as

OX,p :=
{
f
g
|g(p) �= 0

}
, (A.2.3)

the so-called local ring at p. Now, two possible situations are discerned:

(a) p �∈ Y . Then, the first map is surjective on stalks, since any f/g ∈ OX,p
is the image of f/(Fg). Accordingly, OY,p = 0.

(b) p ∈ Y . Here, multiplication by F is no longer surjective, leaving a non-
trivial stalk OY,p .

The following point deserves special attention: even though F vanishes along
Y , multiplication by F remains a nontrivial operation between the stalksOX,p∈Y :
in the local ring, only 0 is mapped to 0. Stated alternatively, F does not van-
ish slightly off Y , and as such the multiplication is non-trivial on germs (recall
that the latter are defined on open sets that necessarily contain points off Y ).
What is to be learnt from this example?

(a) Stalks may jump at points. This situation is to be contrasted with the
case of fibre bundles, where all fibres are isomorphic.

(b) Even though F formally vanishes at p ∈ Y , injectivity still holds, since
both observations are disparate.

A.3 Sheaves of modules

Sheaves of modulesF assign modules to opens U , rather than rings. In partic-
ular, F(U) will be OX(U)-modules. Of course, any ring OX(U) can be viewed
as a module in its own right, and as such, sheaves of modules generalise
structure sheaves.

In what respect do sheaves of modules generalise vector bundles? The
answer comes in two pieces. Firstly, starting from any vectorbundle E, one
builds a corresponding sheaf E as the space Γ (E) of sections of the former,
i.e. for every open U , E(U) is the module of local sections of E, with natural
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restriction maps ρVU . The class of sheaves thus obtained are the locally-free
sheaves. This correspondence can be shown to be one-to-one and onto.

Secondly, just beyond locally-free sheaves are the so-called coherent sheav-
es. Recall that the fiber of a vector bundle is a vectorspace. The latter can
always be freely presented: there is a basis of generators with no relations
among them. Consider instead a module M that is presented by a set of gen-
erators F and a set of relations R1. The relations generate a new module that
will be denoted by the same symbol, for convenience. In turn, the module
R1 need not be free, i.e., there can be additional relations R2 between the re-
lations R1, and so forth. This information is concisely encoded in an exact
sequence:

. . .→ R2 → R1 → F → M → 0 . (A.3.1)

For sheaves M of OX-modules, the corresponding sequence is

. . .→ Or2
X → Or1

X → OrX →M→ 0 . (A.3.2)

This is called a projective resolution; the resolving sheaves OrX are locally-free
(or, OrX(U) are projective modules). Coherent sheaves are singled out by their
associated exact sequences being finite. Locally-free sheaves are in fact trivial
examples of coherent sheaves: the sequence Eq. (A.3.2) consists of two terms
only, and such sheaves are thus freely and finitely generated as OX -modules.
In summary, coherent sheaves are finitely but not necessarily freely generated
and come with a finite sequence of relations.

We conclude this digression by listing some of the generic features of co-
herent sheaves [108] that should develop one’s intuition sufficiently to follow
the discussion in Chapter 5.

(a) It can be shown that for any coherent sheaf F(X), there exists a dense
open subset W such that F|W is free2. More interestingly, the torsion3

is supported inside the complement of W . That is, coherent sheaves are
‘free modulo sheaves with support distinct from X’.

(b) Conversely, a coherent sheaf is a torsion sheaf iff its support is distinct
from X.

(c) For any subvariety D defined by r polynomial constraints in an affine
variety X, the structure sheaf OD may be viewed as a sheaf on X by

2That is, locally free. In other words,

0 → OrW → F|W → 0 ,

is the associated sequence, for some r .
3An R-module M is torsion iff its annihilator AnnR(M) is non-trivial, i.e., if ∃r ∈ R,∀m ∈

M : rm = 0; likewise, a sheafM is a torsion sheaf, if∀U , M(U) is torsion as an OX(U)-module.
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‘extending by zero’. This is an immediate generalisation of the example
given previously:

OrX
F→ OX → OD → 0 , (A.3.3)

where OD is defined as the cokernel of F . When viewed as a sheaf on
X, OD is torsion as the support is not the whole of X. In vector bundle
terminology, this would be signalled by transition matrices with ranks
jumping on X.
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B

Orbifold chiral blocks

This appendix collects explicit expressions for orbifold chiral traces in twist-
ed and untwisted sectors, based on Ref. [1]. The purpose is to provide an
easy reference. For conventions on ϑ-series and the Dedekind η, the reader is
referred to Ref. [76], Chapter 6, or Ref. [1]. It must be clear that no originality
is claimed here.

B.1 Orbifold blocks

B.1.1 Twists, shifts and zero-point energies

The setting will be as follows: let there be given a complex boson X and a
complex fermion ψ together with an element h of the orbifold group G, such
that h and all g ∈ Nh1 are simultaneously diagonal. Further, let the orbifold
be specified by

h ·X = e2π iν ′X ; (B.1.1)

g ·X = e2π iνX , (B.1.2)

and likewise for the fermions.
Then, the h-twisted sector comes with boundary conditions along the

space-direction:

X(σ + 2π) = e2π iν ′X ; (B.1.3)

ψ(σ + 2π) = e2π i(ν ′+ζ)ψ , (B.1.4)

1Nh is the normaliser subgroup of G, see Section 3.2.1
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where ζ = 0 (resp. 1
2 ) is the Ramond- (resp. NS-) sector. The modified condi-

tions, Eq. (B.1.4), induce two effects, to know:

(a) the modings are shifted away from their reference values in the un-
twisted sector; the mode numbers for X,ψ take values in Z + ν′ + ζ′2.
Similarly, those for X̄, ψ̄ acquire shifts with ν′ → −ν′.

(b) A subtler point is the shifted ground-state energy a:

a(X) = 1
24
− 1

8
(2ν′ − 1)2 ;

a(ψ)ζ′ = − 1
24
+ 1

8
(2(ν̃′ + ζ′)− 1)2 . (B.1.5)

These formulas hold for ν′, ν̃′ + ζ′ ∈ [0,2π); the value of ν̃′ is then the
appropriate integer shift of ν′.

The combined ground-state energy vanishes in the R-sector.

B.1.2 The tale of the complex boson . . .

The bosonic chiral blocks are obtained by inspection. If h �= e, one finds

χgh(q) = TrHh(g q
L0− c

24 ) ;

= qa
(X)

⎡⎣ ∞∏
n=0

(1− e2π iνqn+ν
′
)(1− e−2π iνqn+(1−ν

′))

⎤⎦−1

;

= i e−π iνq−
ν′
2

2 η(τ)
ϑ1(ν + τν′|τ)

. (B.1.6)

The second line decomposes into an X-oscillator and an X̄-oscillator factor,
besides the a(X) contribution to L0.

The untwisted sector sees the appearance of bosonic zero-modes, i.e., mo-
menta (+ windings) for noncompact (compact) bosons. These are shared be-
tween chiral and anti-chiral sectors, and there is no natural telling to which
they belong. A discussion of the zero-mode contribution was made on p. 63.
As to the nonzero modes, with a nontrivial g-insertion they yield

χ̂ge (q) = q−
1
12

∞∏
n=1

(1− e2π iνqn)−1(1− e−2π iνqn)−1

= 2 sinπν
η(τ)
ϑ1(ν|τ)

. (B.1.7)

2Set ζ′ = 0 in the bosonic sector.
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B.1.3 . . . and that of the fermion

The story for the fermion is only slightly more complicated than that of the
boson. Similar to the two possible boundary conditions (R/NS), the fermion
number operator (−)F may or may not be inserted inside the trace. A trace
with (without) a (−)F inserted will be labelled by ζ = 0 (1

2). With the zero-
point energies in Eq. (B.1.5), the ψ-ψ̄-pair yields

χζ,gζ′,h(q) = q
ν̃′2
2 e−2π i(ζ′− 1

2 )(ν+ζ−
1
2 )
ϑ
[

1−2ζ′
1−2ζ

]
(τ + ν̃′τ|τ)
η(τ)

. (B.1.8)

Often, it is convenient to trade the (ζ, ζ′)-basis for SO(2)1-characters. The
latter come with labels o,v, s, c, the conjugacy classes of SO(2N), indeed.
This basis-change reads explicitly:

(χo)
g
h = q

(ν̃′)2
2
ϑ3(ν + τν̃′|τ) + ϑ4(ν + τν̃′|τ)

2η(τ)
,

(χv)
g
h = q

(ν̃′)2
2
ϑ3(ν + τν̃′|τ) − ϑ4(ν + τν̃′|τ)

2η(τ)
,

(χs)
g
h = q

(ν′)2
2 eiπν ϑ2(ν + τν′|τ) − iϑ1(ν + τν′|τ)

2η(τ)
,

(χc)
g
h = q

(ν′)2
2 eiπν ϑ2(ν + τν′|τ) + iϑ1(ν + τν′|τ)

2η(τ)
. (B.1.9)

Like in the bosonic situation, the presence of zero-modes requires some
care. Fermion zero-modes exist either in the untwisted R and R(−)F sectors,
or in the NS and NS(−)F sectors twisted by an element of order two (i.e., such
that ν′ = 1/2). The zero-modes e+ = ψi0/

√
2 and e− = ψī0/

√
2, satisfy a

Clifford algebra: {e+, e−} = 1. This produces a two-state spectrum |↓〉, |↑〉,
defined by

e−|↓〉 = 0 ; |↑〉 = e+|↓〉 ; (B.1.10)

In this basis, the zero-mode part of the relevant Lorentz rotation generator
reads J = J12 = 1

2[e
+, e−] = 1

2σ
3. As such, g as given in Eq. (B.1.2) is effected

on the degenerate ground states by exp(2π iνJ), while (−)F = −σ3 similarly.
As a result, a g-insertion with (without) (−)F produces a zero-mode factor
−2i sinπν (resp. 2 cosπν) in the trace.

B.2 Modular transformations

The modular properties of orbifold chiral blocks were dealt with in Ref. [48] in
the context of rational conformal field theories, in which cases the generators
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S, T are realised on the chiral blocks χgh as given by:

g
h

S
�→ σ(h|g)× h−1

g
; (B.2.1)

g
h

T
�→ e−π i c12 τh × hg

h
. (B.2.2)

Since free bosons do not generically build a rational CFT, it is not guar-
anteed, a priori, that the modular properties described above carry over un-
changed. The explicit analysis below will reveal that they do, though.

In view of S playing the key rôle in this thesis, we restrict the discussion
to that. For an account of T and, relatedly, twist field conformal weights, see
Ref. [1].

Consider the bosons first. The characters given in Eq. (B.1.6) behave under
S as

χ(X)
g
h(q

′) = ie2π i
(
νν ′− ν+ν′2

)
χ(X)

h−1

g (q) , (B.2.3)

where τ′ = −1/τ and q′ = exp(2π iτ′); this follows from standard Poisson
resummation. As such, the phase factor in Eq. (B.2.1) is

σ(h|g) = e2π i(ν ′− 1
2 )(ν− 1

2 ) . (B.2.4)

Untwisted characters require a separate treatment, basically due to the
possible presence of zero-modes. For a compactified boson, with momenta
taking only discrete values, the untwisted characters are the χ̂ge (q) of Eq. (B.1.7),
and accordingly S, Eq. (3.2.41) in the text, produces a zero-mode factor

σ̂ (e|g) = 2 sinπν (B.2.5)

in addition to the phase in Eq. (B.2.3).
The fermion twisted sector characters (h �= e, and not of order two) yield

an S-transformation

χζ,gζ′,h(q
′) = e−2π i(ν̃ ′+ζ′− 1

2 )(ν̃+ζ−
1
2 ) χζ

′,h−1

ζ,g (q) , (B.2.6)

with ν̃ being an integer shift of ν such that ν̃ + 1/2 < 1, in analogy with ν̃′.
This transformations exhibits phases

σ(ζ′, h|ζ,g) = e−2π i(ν̃ ′+ζ′− 1
2 )(ν̃+ζ−

1
2 ) . (B.2.7)

In the untwisted case, as well as in the in the case in which h is of order
two, the expressions become simple:

σ(ζ′, e|ζ,g) = e−π i(ζ′− 1
2 )(ζ− 1

2 ) , (B.2.8)



B.3 Characters of submodules 145

that is, only the R(−)F sector acquires a −i factor. Chiral traces in NS-sectors
twisted by a nontrivial h of order two, behave similarly:

σ(ζ′, h|ζ,g) = σ(ζ′ + 1
2

mod 1, e|ζ,g) (h2 = e) . (B.2.9)

Throughout the main text, the o,v, s, c-character basis was used most fre-
quently. Organising phases into 4 × 4 matrices S(h|g) acting on a vector
(χa)

g
h, with a = v, o, s, c, one has

(χa)
g
h

S
�→ [S(h|g)] ba (χb)h

−1

g , (B.2.10)

or more explicitly, for generic h,

S(h|g) = 1
2

⎛⎜⎜⎜⎝
σ( 1

2 ,h| 1
2 ,g) σ( 1

2 ,h| 1
2 ,g) σ( 1

2 ,h|0,g) σ( 1
2 ,h|0,g)

σ( 1
2 ,h| 1

2 ,g) σ( 1
2 ,h| 1

2 ,g) −σ( 1
2 ,h|0,g) −σ( 1

2 ,h|0,g)
−σ(0,h| 1

2 ,g) σ(0,h| 1
2 ,g) σ(0,h|0,g) −σ(0,h|0,g)

−σ(0,h| 1
2 ,g) σ(0,h| 1

2 ,g) −σ(0,h|0,g) σ(0,h|0,g)

⎞⎟⎟⎟⎠ . (B.2.11)

Again, this expression is considerably simplified in the untwisted sec-
tor, where it coincides with the S matrix for the SO(2)1 chiral blocks (see
Eq. (2.2.18)): S(e|g) = S(2). An analogous expression is obtained when the
twist h is of order 2, with (χo)

g
h ↔ (χs)

g
e and (χv)

g
h ↔ (χc)

g
e .

B.3 Characters of submodules

Given the SO(2)1 o,v, s, c characters in Eq. (B.1.9), can these be of any use in
telling how the o,v, s, c modules decompose into AG × G-modules? A short
analysis given below yields an affirmative answer.

For a given h-twisted sector, fix a cyclic subgroup 〈g |gM′ 〉 ⊂ Nh. Let ν in
Eq. (B.1.9) result from an insertion of g in the chiral trace, i.e.

g ·ψ = e2π iνψ ≡ zψ . (B.3.1)

Assume first that the order of g is even; then, one has that

1
2

(
ϑ3(ν + ν̃′τ)+ ϑ4(ν + ν̃′τ)

)
= 1

2

∑
n∈Z

q
n2

2 +ν̃ ′nzn(1+ (−1)n) ;

=
∑
j∈ZM

z2jq−
(ν̃′)2

2

∑
l∈Z
q2(j+lM+ ν̃′2 )2 ;
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=
∑
j∈ZM

z2jq−
(ν̃′)2

2

∑
m∈Z+ 2M(2j+ν̃′)

4M2

q2M2m2
;

=
∑
j∈ZM

z2jq−
(ν̃′)2

2 Θ2M(2j+ν̃ ′),2M2(τ,0,0) .

In this derivation, use was made of the series representation of ϑ-functions.
The last equation follows from the definition of the level-N SU(2) Θ-functions
(see e.g. [110]):

Θm,N(τ, ν,w) := e−2π iNw
∑

n∈Z+ m
2N

e2π iτn2−4π iνNn . (B.3.2)

Altogether, the above result yields concisely that

(χo)
g
h =

1
η(τ)

∑
j∈ZM

z2j q−
(ν̃′)2

2 Θ2M(2j+ν̃ ′),2M2(τ,0,0) . (B.3.3)

Eq. (B.3.3) encodes the desired decomposition into 〈g〉-modules:

[ ]h =
M⊕
j=1

H (j)
,h × R2j , (B.3.4)

and the chiral trace falls apart accordingly:

(χo)h = 1
η(τ)

∑
j∈ZM

q−
(ν̃′)2

2 Θ2M(2j+ν̃ ′),2M2(τ,0,0) . (B.3.5)

Analogous expressions for v, s, c and for g of odd order are derived in a
similar vein. They are summarised in Table B.1.
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z2M = 1

(χo)g = q−
(ν̃′)2

2

η(τ)
∑
j∈ZM

Θ2M(2j+ν̃ ′),2M2(τ,0,0)

(χv)g = q−
(ν̃′)2

2

η(τ)
∑
j∈ZM

Θ2M(2j+1+ν̃ ′),2M2(τ,0,0)

(χc)g = q−
(ν̃′)2

2

η(τ)
∑
j∈ZM

Θ2M(2j− 1
2+ν̃ ′),4M2(τ,0,0)

(χc)g = q−
(ν̃′)2

2

η(τ)
∑
j∈ZM

Θ2M(2j+ 1
2+ν̃ ′),4M2(τ,0,0)

z2M+1 = 1

(χo)g = q−
(ν̃′)2

2

η(τ)
∑

j∈Z2M+1

Θ2(2M+1)(2j+ν̃ ′),2(2M+1)2(τ,0,0)

(χv)g = q−
(ν̃′)2

2

η(τ)
∑

j∈Z2M+1

Θ2(2M+1)(2j+1+ν̃ ′),2(2M+1)2(τ,0,0)

(χc)g = q−
(ν̃′)2

2

η(τ)
∑

j∈Z2M+1

Θ2(2M+1)(2j− 1
2+ν̃ ′),4(2M+1)2(τ,0,0)

(χc)g = q−
(ν̃′)2

2

η(τ)
∑

j∈Z2M+1

Θ2(2M+1)(2j+ 1
2+ν̃ ′),4(2M+1)2(τ,0,0)

Table B.1: Decomposition of (un)twisted SO(2)1 modules.
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C

Samengevat

C.1 Inleiding

Bij een eerste kennismaking lijkt snaartheorie doorgaans gehuld in een waas
van mysterie, niet in het minst te wijten aan een geëigend jargon. Eens de mist
opgetrokken evenwel, ontwaar je een fascinerend spel met een interne con-
sistentie die grenst aan het ondenkbeeldige. In de ban van de fascinatie kun
je al gauw uit het oog verliezen waar het allemaal om begonnen was: een con-
sistente theorie die de waargenomen natuurkrachten geünificeerd beschrijft.
Uiteraard blijft snaartheorie de ultieme kandidaat, al blijft experimentele be-
vestiging voorlopig uit. Anders gezegd, tot op vandaag is theoretische con-
sistentie het enige houvast gebleken. In afwachting van tastbare experimen-
tele evidentie, een mogelijkheid waarvoor sinds kort stemmen opgaan, is de
theorie verder geëxploreerd. Niet alleen zijn er heel wat onvermoede fysische
aspecten van de theorie naar boven gekomen, gaande van (snaar)dualiteiten
tot de Maldacena conjectuur, maar waren er ook nevenproducten van een
meer zuiver wiskundige aard, zoals kwantummeetkunde. Telkens is snaar-
theorie een ideale ’context-of-discovery’ gebleken, een gedroomd theoretisch
laboratorium, zeg maar. Of snaartheorie al dan niet gerealiseerd wordt in de
natuur, wordt, gezien de glansrol die ze speelt in het vernoemde scenario, in
zeker opzicht van ondergeschikt belang. De toekomst moet uitwijzen of dit
aan snaartheorie voldoende bestaansrecht geeft, indien nodig.

Voor we overgaan tot een overzicht van deze thesis in Sectie C.2, onderne-
men we een poging om een beeld te schetsen van enkele centrale concepten.
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C.1.1 De hoofdrolspelers (in deze thesis)

Snaren

Conceptueel zijn snaren vrij eenvoudig, en veralgemenen ze op een natuur-
lijke wijze de notie van puntdeeltjes: waar laatstgenoemde een eendimen-
sionaal traject volgen in ruimte-tijd, de zgn. wereldlijn, volgen snaren een
tweedimensionaal wereldoppervlak, Σ. Wiskundig wordt dit traject vastge-
legd door een afbeelding Φ : Σ→ (M, g). De variëteit M met metriek g wordt
de snaarachtergrond genoemd. Bij gegeven begin- en eindconfiguraties van
de snaar, wordt de snaardynamica bepaald door een actie, voor gesloten bos-
onische snaren bv.

S = 1
α′

∫
Σ
||∂Φ||2g, (C.1.1)

waarbij de norm afgeleid is van de metriek g.
In de kwantumsnaartheorie van Polyakov worden amplitudes gegeven door

een padintegraal, voor de vacuümamplitude bv.∫
Dh

∫
DΦ exp(iS[h,Φ]) (C.1.2)

waarbij gëıntegreerd wordt over metrieken h op Σ, en afbeeldingen Φ die
voldoen aan gepaste randvoorwaarden. Merk dat in de uitdrukking voor S
hierboven, de expliciete h-afhankelijkheid impliciet gelaten werd, om de no-
tatie niet onnodig gecompliceerd te maken. Verder is duidelijk dat S invari-
ant blijft onder coördinaatverandering en herschaling van Σ. Na ijkfixatie van
deze symmetrieën blijft residueel conforme symmetrie over. Men zegt dat
Φ een conforme-veldentheorie vastlegt. Met andere woorden, perturbatieve
snaartheorie is intrinsiek tweedimensionale conforme-veldentheorie, die zich
in eerste instantie weinig inlaat met de ruimte-tijd variëteit (M, g).

In de wetenschap dat conforme symmetrie hét organiserende principe van
snaartheorie is, groeit het besef dat algemenere, consistente snaarachtergron-
den mogelijk zijn: de concrete (Φ,M, g) data kunnen probleemloos vervan-
gen worden door abstracte conforme-veldentheorieën (CVTs) C. Het voor-
naamste datum bij een dergelijke CVT, is de energie-momentum tensor, T ,
die de conforme symmetrie genereert. Verder wordt de theorie gespecifieerd
door een (operator)spectrum Oα en hun OPE-producten onderling en met T .
Conforme symmetrie laat dan in principe toe willekeurige correlatoren te be-
rekenen. Als dusdanig behoren modellen van dit type tot de exact oplosbare
categorie.

Enkele kanttekeningen hierbij: bij abstracte CVTs zijn formuleringen in
termen van een Lagrangiaan, of de gëıntegreerde vorm, een actie, niet bekend.
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Bijgevolg gaat het intuitieve beeld van een minuscule snaar die beweegt in een
gegeven ruimte-tijd verloren. Daar staat evenwel onmiddellijk tegenover dat
conforme symmetrie exact en manifest is, wat niet het geval is met de initiële,
meer meetkundige achtergronden (zie bv. ‘NLSM’, p. 163 in de Glossary voor
een uitgebreidere discussie).

Snaartheorie nu, plaatst abstracte conforme-veldentheorieën op gelijke
hoogte als de intüıtief meer voor de hand liggende meetkundige achtergron-
den. In de afgelopen jaren zijn heel wat prominente voorbeelden bestu-
deerd waarin geargumenteerd wordt dat een abstracte CVT, met energie-
momentumtensor (e.m.-tensor) Tabs , zeg maar, continu vervormd kan worden
naar een geometrisch model met e.m.-tensor Tgeom. Dit wil zeggen, er is (min-
stens) een eenparameterfamilie T(s), s ∈ [0,1] van e.m.-tensoren en bijho-
rende spectra, zodat T(0) = Tabs en T(1) = Tgeom. Elke tussenliggende T(s)
definieert een CVT op zich. We spreken in dat geval van een moduli-ruimte T
van conforme theorieën: T is een lokaal samenhangende verzameling pun-
ten die elk corresponderen met een welbepaalde conforme-veldentheorie, een
parameterruimte van theorieën dus.

D-branen

Sedert enige tijd is snaartheorie niet enkel een theorie van snaren: ze bevat
ook andere ruimtelijk uitgebreide objecten, D-branen genoemd. Feitelijk zijn
het deze laatste die een ware revolutie ontketend hebben in het midden van
het afgelopen decennium. Laten we kort nagaan waar het om gaat.

In een meetkundige achtergrond zijn D-branen hogerdimensionale opper-
vlakken waar eindpunten van open snaren op bewegen. Dit initieel eenvou-
dige concept brengt evenwel het volgende teweeg:

(a) in tegenstelling tot dat van gesloten snaren, heeft het wereldoppervlak
van open snaren randen: de wereldlijnen L1,2 van de eindpunten. Als
dusdanig introduceren D-branen randvoorwaarden die verzekeren dat
L1,2 op het D-braan liggen. In meetkundige achtergronden leidt dit ty-
pisch tot D(irichlet) randvoorwaarden, vanwaar de terminologie.

(b) De kwantisatie van de open snaren die met een D-braan geassocieerd
worden, maken die laatste dynamisch. Intuitief kun je je inbeelden dat
het hogerdimensionale oppervlak gaat bewegen en vervormd wordt. In
het lage-energie regime legt de Born–Infeld theorie, een veralgemening
van de conventionele Yang–Mills ijktheorie, de effectieve dynamica vast.

De termen open snaar, D-braan en randvoorwaarde zijn op die manier onlos-
makelijk verbonden.
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Figuur C.1: Fotonen mediëren de interactie tussen elektronen onderling en
de elektronzelfinteraktie (links); D-branen interageren via gesloten-snaar uit-
wisseling (rechts).

Randtoestanden

Randtoestanden beschrijven aspecten van D-branen vanuit het perspectief
van gesloten snaren. Na de uitleg in de vorige paragraaf kan dit vreemd lij-
ken, maar Fig. C.1 moet verduidelijking brengen: waar elektronen met elkaar
of met zichzelf interageren door uitwisseling van fotonen, doen D-branen dit
met behulp van gesloten snaren. D-branen kunnen dus gesloten snaren uit-
zenden of absorberen. In beide gevallen in Fig. C.1 is het wereldoppervlak van
de gesloten snaren een cylinder, met randen op de branen. In formules wordt
de bijhorende amplitude

Agesloten(τ̃) := 〈D1|eπ iτ̃Hcl |D2〉 , (C.1.3)



C.1 Inleiding 153

waar Hcl de gesloten snaar propageert over een gesloten-snaartijd τ̃; d.w.z.
D-braan 1 zendt een gesloten snaar, |D1〉 uit, die geabsorbeerd wordt door
D-braan 2, 〈D2|. In feite zijn zowel 〈D2| als |D1〉 heel speciale gesloten-snaar-
toestanden: meer bepaald gaat het hier om coherente superposities van per-
turbatieve éénsnaartoestanden. Dit valt als volgt te interpreteren: zoals elek-
tronen zowel gravitonen als fotonen uitzenden, zijn D-branen niet alleen een
bron van snaargravitonen, maar een hele resem gesloten snaren, zoals mas-
sievere gesloten-snaar modes (tot dusver hebben die laatste geen eigen naam
gekregen).

Laten we nu proberen een verband te leggen tussen de beschrijvingen in
de secties ’D-branen’ en ’Randtoestanden’. Uit Fig. C.2 blijkt dat het cylin-
derdiagram waarvan hierboven sprake (links in de figuur), even goed alterna-
tief te interpreteren valt : met een andere keuze voor de tijdrichting (rechts
in de figuur), wordt het een één-lus-vacuumdiagram voor open snaren, met
randvoorwaarden afhankelijk van de D-branen geassocieerd aan |D1,2〉. In dit
open-snaarbeeld wordt de tegenhanger van vgl. (C.1.3):

Aopen(τ) := tr1,2(eπ iτHop) , (C.1.4)

waar een open-snaar over de eigentijd τ = −1/τ̃ wordt gepropageerd in de
lus. Vanwege de tr in vgl. (C.1.4) lees je dit best als een partitiefunctie voor
de open-snaren met de gestelde randvoorwaarden 1,2; deze uitdrukking be-
schrijft dan ook het spectrum van de open snaren tussen D-branen 1 en 2.

Figuur C.2: Tweemaal hetzelfde wereldvolume: links beschouwd met de
gesloten-snaartijd (Born-benadering), rechts in het open-snaarbeeld (één-lus
niveau).

De overgang van het gesloten- naar het open-snaarbeeld komt technisch
neer op een modulaire S-transformatie: ze bewerkstelligt τ̃ → τ. Stel nu
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dat we erin slagen toestanden |D1,2〉 op te schrijven, zodat de S-getransfor-
meerde Agesloten te interpreteren valt als een open-snaar amplitude. Zon-
der in de details te treden, is dit een hoogst niet-triviale voorwaarde: ze legt
o.m. op dat |D1,2〉 welbepaalde coherente superposities zijn van perturbatieve
éénsnaartoestanden, zoals eerder al aangegeven, maar pas nu toegelicht. Ge-
steld dat dit het geval is, kunnen we zeggen dat de randtoestanden D-branen
definiëren: de D-branen worden m.a.w. vastgelegd door de randtoestanden,
eerder dan ze een a priori gegeven zijn. Voor de klasse van zgn. rationale
conforme-veldentheorieën heeft Cardy een canoniek voorschrift uitgewerkt
dat dergelijke randtoestanden oplevert. Een kerngegeven hierbij, is dat de
procedure intrinsiek is aan de conforme-veldentheorie.

Vanwaar de nadruk hierop? Ik herinner de lezer eraan dat het beeld van
D-branen als hoger-dimensionale oppervlakken in de ruimte-tijd (zie sectie
’D-branen’) heel sterk refereert naar een ruimtelijke interpretatie. Anderzijds,
laat snaartheorie evengoed abstracte CVTs (sectie ’Snaren’) toe als consistente
snaarachtergronden. De totale afwezigheid van enige ruimtelijke interpretatie
bij die laatste klasse achtergronden vormt de aanleiding tot de vraag hoe dat
dan zit met D-branen. Wel dan, Cardy’s strategie breidt de D-braan notie
uit van meetkundige naar algemene conforme-veldentheorie snaarachtergron-
den, precies doordat ze in intrinsieke CVT-data geformuleerd is, zonder enige
verwijzing naar ruimtetijd.

Orbifold ruimten

Een laatste voorname ingrediënt in deze thesis zijn de zgn. orbifold ruimten.
Dit zijn ruimten M die er lokaal uitzien als een quotient Rn/G waarbij G een
eindige puntgroep van n-dimensionale rotaties is. Zo je wil, correspondeert
een punt van M met een G-orbiet van punten in Rn. In twee dimensies kun
je je alternatief het volgende voorstellen: neem een segment met een ope-
ningshoek α = 2π/n (n ∈ N0). De kegel die ontstaat door de randen van
het segment te identificeren, is een model voor R2/Zn. In het bijzonder is de
orbifold ruimte lokaal vlak, en vertoont ze een konische singulariteit in de
top van de kegel (zie Fig. C.3).

Hoe zou een tweedimensionale waarnemer de singulariteit kunnen vast-
stellen? Eenvoudigweg, door een stok voor zich uit te houden, en bv. recht-
door te wandelen langs een cirkelsegment, zoals aangegeven in Fig. C.3. Terug
op zijn beginpositie, zou hij vaststellen dat de richting van de stok gedraaid
is over een hoek 2π/n! Dit fenomeen zou zich in feite voordoen voor elk
gesloten traject rond de singulariteit: n keren rond het traject lopen brengt
de stok terug in de initiële richting. Dit illustreert dat de ruimte niet globaal
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vlak is. Technisch gesproken, ondergaan raakvectoren bij parallel transport
rond de singulariteit een holonomie-transformatie, toe te schrijven aan de
opgehoopte Riemannse kromming in de singulariteit.

Figuur C.3: Een tweedimensionale vlakke orbifold ruimte. Bij identificatie
van de randen van het segment (l.) ontstaat de kegel (r.). Parallel-transport
van de vectoren langs het traject aangegeven in . . . detecteert een konische
singulariteit.

Ondanks de singulariteiten, is snaartheorie perfect zinvol op orbifold ach-
tergronden, allicht tegen de verwachtingen in. Historisch is dit op twee ma-
nieren uitgelegd. Ten eerste bevat gesloten-snaartheorie extra toestanden tov.
snaren in vlakke ruimte: de zgn. getwiste sectoren, waar gesloten snaren fei-
telijk enkel gesloten zijn modulo G; dwz. dat de snaarvelden in dergelijke
sectoren aan gewijzigde periodiciteitsvoorwaarden voldoen, typisch

φ(σ + 2π,τ) = g∗φ(σ,τ), (g ∈ G), (C.1.5)

waar σ,τ het wereldoppervlak parametriseren. Deze sectoren zijn niet echt
een optie: consistentie, met name, modulaire invariantie, vereist dat deze
deel uit maken van de theorie. Verder is het zo dat die getwiste sectoren
de nodige ingrediënten bevatten om de singulariteit ongedaan te maken (zie
Hoofdstuk 3), en dit gegeven werd lange tijd beschouwd als een verklaring
van het verbazend goede gedrag van de snaartheorie.

Is er meer fysisch begrip mogelijk? Laten we eerst aangeven dat een al-
ternatief, equivalent beeld van orbifold ruimten mogelijk is: er kan aange-
toond worden dat het ontstaan van de konische singulariteit gepaard gaat
met cykels, deelruimten, zeg maar, die minuscuul klein worden. Stel nu dat
een D-braan rond zo een cykel gewonden is. Een eindig-volume cykel geeft
zo aanleiding tot een massieve D-braantoestand, via de eindige spanning van
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deze laatste. In de orbifold limiet, waar het volume van de cykel naar nul gaat,
vinden we zodoende massaloze toestanden. Het zojuist geschetste beeld is
echter niet volledig. Naast de volumefactor, genereert ook de aanwezigheid
van een eindige B-flux een D-braanmassa. De ruimten die overeenkomen met
de niet-singuliere conforme-veldentheorie zijn precies van het type waarbij
cykels een nulvolume hebben, maar waar een eindige B-flux opgehoopt zit in
de singulariteit. De bijhorende D-braantoestanden zijn dan ook massief. Hoe
past dit nu in het plaatje? Wel, stel zowel volumes als B-flux nul waren, dan
zouden er massaloze D-braantoestanden bestaan, geassocieerd met branen
die rond nulvolume-cykels gewonden zitten. In de effectieve supergravitatie-
beschrijving van snaartheorie zijn de bijhorende velden echter niet aanwezig:
er zijn aldus extra massaloze toestanden, buiten diegene, beschreven door
de effectieve-veldentheorie. Typisch wordt een dergelijke situatie gesigna-
leerd door divergenties in diverse amplitudes; m.a.w., de theorie gedraagt
zich slecht. Niets van dit alles echter, in de orbifold conforme-veldentheorie.
Dit wordt dan ook uitgelegd door de aanwezigheid van B, die voorkomt dat
D-braantoestanden massaloos worden.

Dit alles, gecombineerd met de wetenschap dat orbifold ruimten exacte
conforme-veldentheorieën genereren, maakt die laatste tot het ideale studie-
domein voor diverse aspecten van snaartheorie.

C.2 Overzicht en samenvatting

In deze thesis staan D-branen en orbifold meetkunde centraal. In een reeks
publicaties [1, 81, 111] werden randtoestanden voor orbifold D-branen syste-
matisch ontwikkeld. We vonden het zinvol de resultaten te situeren binnen
het ruimere kader van snaarmeetkunde, die in feite uiteenvalt in twee delen:
bevat Hoofdstuk 3 het ’klassieke’ gezichtspunt, dan vormt McKay correspon-
dentie de bulk van Hoofdstuk 5. Inzicht in zowel snaartheoretische als puur
wiskundige aspecten van die correspondentie is relatief jong, en nog volop in
ontwikkeling. Bij elkaar genomen, neemt een overzicht van dit referentieka-
der zowat de rest van deze thesis in beslag. Dit impliceert dan meteen dat een
aantal onderwerpen waarover we gepubliceerd hebben, geen plaats vinden
binnen het bestek: we besteden geen aandacht aan speciale Kählermeetkunde
[112, 113, 114], anomale koppelingen van D-branen en oriëntifold vlakken
[64, 65, 66, 81], of NS-branen in type-0 theorieën [115]. Voor een behandeling
van de laatstegenoemde twee onderwerpen kun je terecht bij [63].

In wat volgt, geven we een overzicht van de verschillende Hoofdstukken.



C.2 Overzicht en samenvatting 157

C.2.1 Hoofdstuk 2 : Aspecten van conforme-veldentheorie

Hoofdstuk 2 vormt in zekere zin een aanloop tot deze thesis. In Sectie 2.1
worden drie gezichtspunten op D-branen ontwikkeld. Ten eerste bestaan er
zogenaamde D-braanoplossingen in supergravitatie, verder kun je D-branen
zien als randvoorwaarden, en tenslotte zijn D-branen onlosmakelijk verbon-
den met ijktheorieën.

Sectie 2.2 belicht een aantal voornamelijk algebraische aspecten van con-
forme-veldentheorieën. Aan bod komen de structuur van de Hilbertruimte
van toestanden, fusie-regels en de Verlinde-formule, en modulaire transfor-
maties. Uiteraard is dit standaardmateriaal, en de sectie wil voornamelijk een
referentiekader voor het vervolg van de thesis scheppen.

Tot slot is er in Sectie 2.2.3 ook aandacht voor verbanden tussen super-
symmetrieën in wereldvolume- en ruimte-tijdtheorieën. In feite is dit een
eerste voorbeeld van het centrale thema in de thesis, nl. een antwoord op de
vraag hoe ruimte-tijd- en wereldvolumetheorieën elkaar weerspiegelen.

C.2.2 Hoofdstuk 3 : Meetkunde: deeltjes, snaren en D-branen

Een uitgebreid Hoofdstuk 3 brengt een collage van (snaar-)meetkundige as-
pecten in de bestaande literatuur samen, met een tweevoudig objectief: ener-
zijds wil ze de coherentie tussen klassieke meetkunde, conforme-veldenthe-
orie en D-braantechnieken onder het voetlicht plaatsen, terwijl ze anderzijds
explicietheid nastreeft. Verder zijn de volgende nevenresultaten nieuw:

(a) In een voorbereidende fase die de thesis voorafging, vonden we expli-
ciete uitdrukkingen voor de chirale sporen over de orbifold submodules
als ZN -representaties. Deze zijn samengevat in Tabel B.1.

(b) We leggen een verband tussen het wereld-volume fermiongetal en het
concept ’age-grading’, wat ons toestaat een intermediaire versie van McKay
correspondentie in een snaarfysische context te identificeren. De vast-
stelling wordt ondersteund door inzichten uit de torusmeetkunde.

Sectie 3.1 brengt een aantal klassiek-meetkundige noties in herinnering.
Speciale aandacht gaat eerst uit naar aspecten van speciale holonomie, en hoe
deze weerspiegeld wordt in termen van superconforme symmetrie-algebra’s
enerzijds, en ruimte-tijd supersymmetrie anderzijds. De resultaten zijn sa-
mengevat in Tabellen 3.2 en 3.3. Een tweede onderwerp dat uitgebreid behan-
deld wordt, betreft desingularisatie van orbifold ruimten. Kort gesteld, zijn
twee methodes voorhanden: opblazen en vervormen. Beide worden gedetail-
leerd gëıllustreerd aan de hand van ADE-singulariteiten.
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In Sectie 3.2 bekijken we de formele structuur van de conforme-velden-
theorie geassocieerd met orbifold ruimten. Het stramien in Hoofdstuk 2 vol-
gend, spitsen we de aandacht vooral toe op de toestands-Hilbertruimte en
de fusieregels. Ook hier dient een uitgebreide analyse van ADE-orbifolds als
concreet referentiekader voor de lezer. Meer in het bijzonder, wordt de aan-
dacht gevestigd op een correspondentie tussen conforme-veldentheorie en
de meetkunde van opgeblazen orbifold ruimten, zoals eerder al uitgewerkt.
Omdat ADE-singulariteiten in menig opzicht te eenvoudig zijn, werken we
tenslotte een correspondentie uit voor abelse zgn. Calabi-Yau orbifold groe-
pen. Technieken uit torusmeetkunde maken de overgang van veldentheorie
naar meetkunde expliciet zichtbaar.

Sectie 3.3 tenslotte, behandelt branen op orbifold ruimten, de zgn. fractio-
nele D-branen. Dat representatietheorie een sleutelrol speelt bij de identifica-
tie van elementaire fractionele branen, komt niet totaal uit de lucht gevallen.
Met dit gegeven exploreren we verder hoe desingularisatie in het algemeen, en
voor ADE-gevallen in het bijzonder, fysisch gerealiseerd wordt in de ijktheorie
op de branen.

C.2.3 Hoofdstuk 4 : Randtoestanden

Dit Hoofdstuk ontwikkelt een systematische aanpak van randtoestanden. Daar-
toe bestuderen we in Sectie 4.1 eerst randvoorwaarden: de klasse van rand-
voorwaarden die een centrale rol gaan spelen zijn die, die een deelalgebra van
de volledige symmetrie-algebra bewaren. Dit principe wordt toegepast op een
N = 4 superconforme symmetrie-algebra in twee dimensies.

Sectie 4.2 herneemt Cardy’s constructie van consistente randvoorwaarden
en -toestanden in algemene rationale modellen. Zoals uitgelegd op p. 153,
betekent ”consistent”hier dat een open-snaar interpretatie zinvol is. Cardy’s
voornaamste resultaat is bevat in een uitdrukking voor de randtoestanden
in termen van de modulaire S-matrix. Anders gezegd, geeft formule (4.2.19)
consistente randvoorwaarden (D-branen) in termen van intrinsieke conforme-
veldentheoriedata.

Vooraleer orbifold-randtoestanden aan te pakken, worden randtoestanden
voor supersnaar D-branen in vlakke ruimte in detail uitgewerkt. Hierbij is de
analyse van de fermionische component in Sectie 4.3.2 een nieuw gegeven.
Verder wordt uitgelegd hoe de absolute normering van de randtoestanden,
en bijgevolg ook de fysische spanning en lading van de D-branen, afgeleid
wordt uit beschouwingen van bosonische nulmodes.

In de afsluitende Sectie 4.4 laten we zien hoe Cardy’s voorschrift veral-
gemeend wordt, zodat het de randtoestanden voor fractionele orbifold D-
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branen produceert. Oorspronkelijk waren de randtoestanden op een primi-
tievere manier geconstrueerd in onze artikels [81, 111], door handmatig de
consistentie te gaan opleggen. Omdat het Cardy-kader deze resultaten impli-
ceert, hernemen we de resultaten in die publicaties niet.

C.2.4 Hoofdstuk 5 : McKay correspondentie

Hier komen verschillende formuleringen van de McKay correspondentie aan
bod. Eenvoudig gesteld, legt ze een niet-triviaal verband tussen de meetkunde
van gedesingulariseerde orbifold ruimtes enerzijds, en representatietheorie
van de orbifold groep G anderzijds. Dit gebeurt op verschillende niveaus:

(a) Het topologische Euler getal χ van de orbifold resolutie is gelijk aan het
aantal conjugatieklassen van G.

(b) Noem K(X) de K-theorie ring van (equivalentieklassen van) holomorfe
vectorbundels op de resolutie, en Kc(X) de ring van bundels met com-
pacte drager, dan bestaat er een reguliere paring op de produktgroep.
Verder bestaan er duale bases {RI}, {SJ} tov. dit inprodukt, zodanig
dat (SI, SJ) uitgedrukt kan worden in termen van de representatietheo-
rie van G.

Naast deze zwakke en sterke vorm, vind je nog een intermediaire formulering
terug in Sectie 5.1.

In Sectie 5.2 gaan we na hoe D-branen de Sterke McKay Correspondentie
realiseren in een fysische context. Een sleutelrol is daarbij weggelegd voor de
spinbundel over X. Een dergelijke expliciete uitwerking was o.i. tot dusver
een hiaat in de bestaande literatuur. We hopen dan ook dat deze sectie enige
verduidelijking brengt.

Tenslotte dan, vormen fractionele D-branen op ADE-singulariteiten het on-
derwerp van Sectie 5.2.3. Een grondige analyse met de randtoestanden als
uitgangspunt, laat zien hoe de fractionele D-branen McKay correspondentie
realiseren via topologische intersecties. Eens te meer is dit een illustratie van
een niet-triviaal verband tussen a priori geometrische en veldentheoretische
eigenschappen. In minder uitgebreide vorm is deze analyse terug te vinden
in ons artikel [1].

C.2.5 Hoofdstuk 6 : Discrete torsie

Modulaire invariantie, een sterke consistentievoorwaarde op gesloten-snaar-
modellen, blijkt dikwijls niet voldoende om orbifold groepen eenduidig te
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identificeren met de genoemde snaarmodellen: deze ambigüıteit wordt dis-
crete torsie genoemd; ze komt erop neer dat de toruspartitiefunktie in orbi-
foldmodellen een keuzevrijheid toelaat wat relatieve gewichten betreft:

Z =
∑
g,h
ε(g,h)

∣∣∣∣g h

∣∣∣∣2

, (C.2.1)

met een afbeelding ε : G × G → U(1). Omdat de partitiefunktie het gesloten-
snaarspectrum beschrijft, stellen we vast dat eenzelfde orbifoldgroep geas-
socieerd kan worden met uiteenlopende spectra. In Sectie 6.1 hernemen we
Vafa’s [100] oorspronkelijke analyse van het fenomeen, met als resultaat dat
de groepcohomologie H2(G;U(1)) de keuzevrijheid qua fasefactoren onder
controle brengt. Anders gezegd, zijn de inequivalente modellen bij een gege-
ven groep G eenduidig te identificeren met cohomologieklassen. Een expliciet
voorbeeld, G = Z6 × Z6 moet de lezer enige houvast bieden.

Sectie 6.2 onderzoekt de implicaties van discrete torsie op D-branen en
open snaren. Waar gesloten snaren in verband gebracht werden met groep-
cohomologie, nemen projectieve representaties de organiserende rol over bij
open snaren. Dit resultaat werd al vooropgesteld door Douglas in [99]. In
termen van de randtoestanden, geconstrueerd in [1], is een alternatief bewijs
algebräısch en eenvoudig; we geven dit nieuwe argument in Sectie 6.2. Verder
maakt Douglas’ analyse van de ijktheorieën duidelijk dat D-branen nu dis-
crete ladingen dragen. Dit wil zeggen dat de ladingen torsie-elementen zijn in
het ladingsrooster: identieke niet-nul discrete ladingen, voldoende in aantal,
annihileren elkaar. Dit bizarre fenomeen is toe te schrijven aan de gewijzigde
orbifoldprojectie, die de geassocieerde niet-invariante R-R potentiaal uit het
spectrum verwijdert.

Afsluitend, wordt de correspondentie tussen conforme-veldentheorie en
meetkunde herzien voor modellen met torsie. Het meest in het oog springend,
is de vaststelling dat niet langer alle snaarmodes aanwezig zijn om de orbi-
fold singulariteit teniet te doen, zoals oorspronkelijk opgemerkt door Vafa
en Witten [105]. Tot dusver fungeerden voornamelijk G = Zn × Zn-modellen
voor n = 2,3 als voorbeelden in de literatuur. Het n = 6 voorbeeld, dat een
rijker spectrum van modellen toestaat vanwege het acyclische karakter van
H2(G;U(1)) = Z2 × Z3, moet de eerste stappen in een meer gedetailleerde
ontwikkeling van de correspondentie illustreren. We beperken ons tot een
discussie in termen van torusmeetkunde, en laten een nadere analyse voor
verder onderzoek.
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C.2.6 Ter conclusie

Om af te ronden lijkt het zinvol na te gaan wat precies bereikt werd in deze
thesis. Ontegensprekelijk staat de uitbreiding van Cardy’s constructie van
randtoestanden naar orbifold CVTs voorop. De aldus geconstrueerde toe-
standen zijn de gesloten-snaar beschrijving van orbifold D-branen. Cardy’s
formalisme heeft ons in staat gesteld D-branen in willekeurige meetkundige
orbifold achtergronden te behandelen in één enkel geünificeerd kader.

Hiernaast werden ook nog enkele nevenresultaten bereikt, te weten:

(a) Torusmeetkunde weerspiegelt een versie van McKay correspondentie
tussen de sterke en zwakke vorm in; de fysische realisatie gebeurt door
gesloten snaren (zie Hoofdstuk 3).

(b) Bij een G-orbifold zijn de SO(2)1-modules manifest te ontbinden in G-
representaties. De bijhorende expliciete uitdrukkingen voor de karak-
ters vind je terug in Appendix B.

Van een intrinsiek interessantere aard is de wetenschap dat het onderwerp
niet ‘af’ is: de voornaamste open problemen zijn o.i.

(a) D-branen in orbifold achtergronden met discrete torsie vallen bezwaar-
lijk onder de noemer ‘volkomen begrepen’. Het blijft een uitdaging uit te
leggen hoe McKay correspondentie, discrete ladingen en K-theorie onder
één dak te brengen zijn.

(b) Tot dusver is weinig concreet onderzoek verricht naar de relatie tussen
McKay correspondentie en orientifold achtergronden. Aangezien laatst-
genoemde in staat zijn N = 1, d = 4 ijktheorieën te produceren, lijkt
een gewijzigde correspondentie niet compleet uit de lucht gegrepen. De
sleutel ligt wellicht in een beter begrip van de orientifold projectie.
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D

Glossary

NLSM In the non-linear sigma-model approach to string theory, which is the
two-dimensional QFT governed by the action

S = 1
α′

∫
Σ
Gμν(X)∂Xμ∂̄Xν + . . . ,

the fields can be expanded:

X = x0 + Xqu ;

that is, 〈X〉 = x0, or the classical and quantum pieces have been separated.
The metric on the target space is likewise expanded around x0, yielding ef-
fectively

S = 1
α′

∫
Σ
Gμν(x0)∂X

μ
qu∂̄Xνqu + . . . .

where ’. . .’ involves subleading (higher order) terms. Classical string back-
grounds are as such specified by a choice of a target space metric Gμν (and
other fields). The corresponding NLSM describes strings propagating in that
background.

worldsheet In the worldsheet point of view, string theory consists of a collec-
tion of auxiliary two-dimensional quantum field theories, living on Riemann
surfaces. In these two-dimensional theories, the rôle of 	 is played by α′,
the inverse tension of the string: α′ governs the loop expansion of the two-
dimensional correlation functions. Sending α′ to zero, i.e. taking a limit
where all dimensionful quantities p are such that α′rp → 0, corresponds
physically to treating strings as point particles.
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boundary state Boundary states are closed-string states that preserve a di-
agonal subalgebra B of the chiral × anti-chiral symmetry algebra, i.e. they
typically solve conditions like (OL + OR)|B〉 = 0 for OL + OR ∈ B. As such,
they are observed to impose boundary (gluing) conditions that relate left- and
right-moving closed-string worldsheet fields.

BPS States are called BPS if they preserve supersymmetry. With central charges
Z in the supersymmetry algebra setting a lower bound for the masses M in
that charge sector, M ≥ |Z|, states saturating the bound are guaranteed to be
BPS. Since they are annihilated by the preserved SUSY generators, such states
come in smaller irrepses (shorter multiplets) of the original supersymmetry
algebra. A collection of states is called mutually BPS if all preserve the same
supersymmetry subalgebra.
Examples:
1. 1

2 -BPS D-brane states in flat Minkowski space, having a mass density
equal to their RR-charge density.
2. Chiral primary states of theN = 2, d = 2 SCA. These states saturate
h = q, i.e. their conformal weight equals their U(1)-charge.

space-time singularity A space-time singular point is characterised by some
curvature scalar, e.g. RμνRμν diverging there. In general relativity, the solu-
tions to Einstein’s equations are believed to be such that their singularities
are hidden behind a so-called event horizon; i.e. no naked singularities occur.
The prototypical example is the Schwarzschild black hole.

orbifold singularity (Flat space) orbifolds considered in the present thesis
locally look like Rd/G, where G is some finite subgroup of the group of ro-
tations centered at the origin. Except at the origin therefore, they are locally
isomorphic to Rd; at the origin, however, there is a singularity of conical
type.

type II strings Closed-string theories with a gauged (1,1) worldsheet super-
symmetry, and (c, c̃) = (15,15) matter CFTs exist in four types: IIA/IIB and
0A/0B, of which only the first two realise (N = 2) space-time supersymme-
try. The A and B types are distinguished by their left-moving Ramond ground
state having the same (B) or opposite (A) space-time chirality as the right-
moving one.

Ramond-Ramond states In the simplest type II theories, boundary conditions
can be imposed indepently on the left- and rightmoving worldsheet fermions:
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if periodic (anti-periodic), the corresponding sector is called Ramond, R, (Neveu-
Schwarz, NS). Accordingly, type II theories have four sectors: NS-NS, R-NS, NS-
R and R-R, labeled by left- and right-moving sectors. The R ground state is a
space-time spinor, and therefore, the R-R ground state is a bispinor. Upon use
of Fierz identities, the latter is decomposed into differential p-forms, with p
even/odd in IIA/IIB, due to the relative chirality of the left- and right-moving
spinors.

SUGRA multiplet A supersymmetry multiplet is a collection of fields φi, such
that the supersymmetry algebra is realised on φi and their derivatives. The
multiplet is called off-shell provided the algebra closes without invoking the
equation of motion for the φi, and on-shell otherwise. Besides the SUGRA
multiplet, that contains the graviton, there exist so-called matter multiplets,
e.g. the hypermultiplet, vector multiplet and tensor multiplet (d ≤ 6).

divisor Given a complex manifold M of dimension n, a formal linear com-
bination

∑
i niVi (ni ∈ Z) of analytic codimension 1 subvarieties is called a

divisor. Equivalently, a divisor is associated to a meromorphic section s of
a holomorphic line bundle L over M : Vi are the sets of points where s van-
ishes or has poles, and ni are the orders of the zeroes (ni > 0) or the poles
(ni < 0).

In a blow-up X̃ π→ X of a point p ∈ X, a divisor E ⊆ X̃ is called exceptional,
if E ⊆ π−1(p).

birational map A birational map Y
f→ X is an isomorphism on dense subsets

of Y,X. In particular, f or f−1 need not be well-defined on the complements
of these subsets. Even though a weaker equivalence than homeomorphism,
birational equivalence is a useful notion in algebraic geometry. Blow-ups Y π→
X are canonical examples of birational maps.
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[1] M.Billó, B.Craps and F.Roose, Orbifold boundary states from Cardy’s
condition, JHEP 01 (2001) 038, hep-th/0011060.

[2] G. T.Horowitz and A.Strominger, Black strings and p-branes, Nucl.
Phys. B360 (1991) 197–209.

[3] J.Polchinski, TASI lectures on D-branes, hep-th/9611050.

[4] A.Hanany and E.Witten, Type IIB superstrings, BPS monopoles, and
three-dimensional gauge dynamics, Nucl. Phys. B492 (1997) 152–190,
hep-th/9611230.

[5] N.Seiberg, Non-trivial fixed points of the renormalization group in six
dimensions, Phys. Lett. B390 (1997) 169–171, hep-th/9609161.

[6] N.Seiberg, Comments on string dynamics in six dimensions, Nucl. Phys.
B471 (1996) 121–134, hep-th/9603003.

[7] S. S.Gubser, I. R.Klebanov and A. M.Polyakov, Gauge theory correlators
from non-critical string theory, Phys. Lett. B428 (1998) 105,
hep-th/9802109.

[8] J.Maldacena, The large N limit of superconformal field theories and
supergravity, Adv. Theor. Math. Phys. 2 (1998) 231–252,
hep-th/9711200.

[9] E.Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.
2 (1998) 253–291, hep-th/9802150.

[10] O.Aharony, S. S.Gubser, J.Maldacena, H.Ooguri and Y.Oz, Large N field
theories, string theory and gravity, Phys. Rept. 323 (2000) 183,
hep-th/9905111.

[11] A.Strominger and C.Vafa, Microscopic origin of the Bekenstein-Hawking
entropy, Phys. Lett. B379 (1996) 99–104, hep-th/9601029.



168 BIBLIOGRAPHY

[12] N.Seiberg and E.Witten, String theory and noncommutative geometry,
JHEP 09 (1999) 032, hep-th/9908142.

[13] P.Di Vecchia et al., Classical p-branes from boundary state, Nucl. Phys.
B507 (1997) 259, hep-th/9707068.

[14] A.Recknagel and V.Schomerus, D-branes in Gepner models, Nucl. Phys.
B531 (1998) 185–225, hep-th/9712186.

[15] P.Di Francesco, P.Mathieu and D.Senechal, Conformal field theory,. New
York, USA: Springer (1997) 890 p.

[16] E.Verlinde, Fusion rules and modular transformations in 2-d conformal
field theory, Nucl. Phys. B300 (1988) 360.

[17] R.Dijkgraaf, E.Verlinde and H.Verlinde, c = 1 conformal field theories
on Riemann surfaces, Commun. Math. Phys. 115 (1988) 649–690.

[18] N.Seiberg, Observations on the moduli space of superconformal field
theories, Nucl. Phys. B303 (1988) 286.

[19] L.Alvarez-Gaume and D. Z.Freedman, Geometrical structure and
ultraviolet finiteness in the supersymmetric σ -model, Commun. Math.
Phys. 80 (1981) 443.

[20] H.Kawai, D. C.Lewellen and S. H. H.Tye, Construction of fermionic string
models in four dimensions, Nucl. Phys. B288 (1987) 1.
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[35] T.Hübsch, Calabi–Yau manifolds : a bestiary for physicists. World
Scientific, 1991.

[36] A.He and P.Candelas, On the number of complete intersection
Calabi-Yau manifolds, Commun. Math. Phys. 135 (1990) 193–200.

[37] P. S.Aspinwall, B. R.Greene and D. R.Morrison, The monomial-divisor
mirror map, alg-geom/9309007.

[38] D. I.Dais and M.Roczen, On the string-theoretic Euler number of
3-dimensional A-D-E singularities, math.ag/0011117.

[39] P. B.Kronheimer, The construction of ALE spaces as hyperKahler
quotients, J. Diff. Geom. 29 (1989) 665–683. In ”Gibbons, G.W. (ed.),
Hawking, S.W. (ed.): Euclidean quantum gravity” 539-557.

[40] H.Pinkham, Singularités exceptionnelles, la dualité étrange d’ Arnold et
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